Закалка после цементации стали 20

Читайте также:

  1. НИТРОЦЕМЕНТАЦИЯ

Химико-термическая обработка стали

Цементацией называется процесс насыщения поверх­ности стальных деталей углеродом.

Диффузия углерода в сталь возможна, если углерод находится в атомарном состоянии, получаемом, напри­мер, диссоциацией газов, содержащих углерод (СО, СН4 и др.). Атомарный углерод адсорбируется поверхностью стали и диффундирует в глубь ее.

Цементация производится при температуре выше точки АСз, когда сталь находится в аустенитном состоянии, обычно при температуре 920—930°С. Для существенного сокращения продолжительности процесса применяют высо­котемпературную цементацию при 980—1050°С. Этот метод увеличивает производительность в 2—4 раза.

Для цементации используют как углеродистые, так и легированные стали с содержанием углерода от 0,1 до 0,3%. Степень насыщения поверхности углеродом — до 0,8-1,1%.

Различают три вида цементации: твердую, газовую и жидкостную.

Для цементации деталей в твёрдом карбюризаторе их упаковывают в ящики и засыпают карбюризатором, который состоит из смеси древесного угля (60-90%) и углекислых солей BaCO3 (40-10%) (рис.2). После упаковки ящики закрывают крышкой, обмазывают шамотной глиной, просушивают и устанавливают в печь.

Рис. 2 Схема расположения деталей в цементационном ящике: 1 – карбюризатор; 2 – контрольный образец – “свидетель”

Благодаря ряду преимуществ перед цементацией в твёрдом карбюризаторе газовая цементация нашла широкое применение на заводах массового и мелкосерийного производства.

Процесс газовой цементации впервые был предложен П.П. Аносовым в 30-х годах прошлого века.

Газовая цементация осуществляется нагревом стальных изделий в среде углеродосодержащих газов. В качестве карбюризатора применяют природный газ (СН4), а также пропан-бутановые смеси, подвергнутые специальной обработке. Часто используют жидкие карбюризаторы (керосин грозненского месторождения, синтин и др.), подаваемые в печь каплями.

Для получения заданной концентрации углерода в поверхностном слое и светлой поверхности деталей применяется эндотермический газ (сокращённо эндогаз). Контролируемая эндотермическая атмосфера получается частичным сжиганием природного газа или другого газообразного углеводорода в специальном генераторе.

Химизм процесса газовой цементации сводится в основном к диссоциации метана (СН4→2Н2ат) и окиси углерода (2СО→СО2+ Сат).

Жидкостная цементация осуществляется в соляной ванне следующего состава: 75—80% Na2СО3, 10—15% Na2Cl и 6—10% SiC (карборунд). Этот состав был предложен в 1935 г. С. С. Штейнбергом. Процесс ве­дется при температуре 850—860°С, скорость науглеро­живания 0,12—0,15 мм/ч. Добавление в ванну хлористо­го аммония (NH4C1) позволяет интенсифицировать про­цесс.

Основным преимуществом жидкостной цементации в соляных ваннах является быстрота, равномерность на­грева и возможность непосредственной закалки обраба­тываемых деталей из соляной ванны.

После цементации детали необходимо подвергать термической обработке — закалке и отпуску.

Наиболее часто после цементации, особенно при обра­ботке наследственно мелкозернистых сталей, применяют закалку выше точки Ас1 (820—850°С). Это обеспечивает измельчение зерна цементованного слоя и частичную пере­кристаллизацию и измельчение зерна сердцевины. После газовой цементации сталей типа 18ХГТ, 18ХГТЦ и других с наследственным мелким зерном применяют закалку не­посредственно из цементационной печи после подстуживания до температуры 840—860°С и охлаждают в горячем масле с температурой 160—180°С.

Для сталей типа 20Х2Н4А и 18Х2Н4ВА после цемен­тации проводят высокий отпуск, затем закалку.

После цементации в твердом карбюризаторе иногда применяют двойную закалку и отпуск. Первую закалку (или нормализацию) с нагревом до температуры 880— 900°С проводят для устранения перегрева и цементитной сетки в упрочненном слое. Вторая закалка про­водится в воде или масле (в зависимости от марки стали) с 770—830°С для устранения перегрева цементо­ванного слоя и придания ему высокой твердости.

Во всех случаях после закалки производят низкий отпуск при температуре 160—200°С.

Структура цементованного слоя после термической обработки состоит из мелкоигольчатого мартенсита, иногда с включениями избыточного цементита и остаточ­ного аустенита.

Твердость поверхностного цементованного слоя после термической обработки HRC 58—64.

Pиc. 3. Mикpocтpyктypa цeмeнтиpoвaннoгo слоя пocлe медленнoгo oxлаждения

Рис. 4. Микроструктура заэвтектоидного слоя, × 500:

а – нормальная; б – анормальная

Типичные режимы термической обработки показаны на рис. 5.

Рис. 5. Режимы термической обработки цементированных деталей

Обычно закалку производят с цементационного нагрева, иногда после некоторого подстуживания и обработки холодом (рис. 5, а). Хотя этот режим самый экономичный в смысле продолжительности процесса и расхода топлива, он сохраняет крупнозернистость поверхностного слоя и сердцевину, зерно аустенита выросло в процессе длительного нагрева при цементации.

Поэтому когда к цементованным изделиям предъявляют повышенные требования в отношении механических свойств после цементации, охлаждение производят медленное и затем дается закалка с повторного нагрева (рис. 5, б)или даже двойная закалка (первая выше Ас3для сердцевины, вторая выше Ас1для поверхности (рис. 5, в). Многочисленные нагревы вызывают изменение размеров, поэтому, если термическая обработка дается по режимам на рис. 5, б или на рис. 5, в,цементированные изделия должны проходить шлифовку («под размер»), что обычно не делается в случае закалки с цементационного нагрева.

Если цементировали слабо прокаливающуюся углеродистую сталь, то структура сердцевины цементируемой углеродистой стали независимо от режима обработки состоит из перлита и феррита, отличающихся разным размером зерна (мелкозернистая в случае двойной обработки, более крупнозернистая – при одинарной, рис. 6, а, б).

Рис. 6. Микроструктура сердцевины цементированной углеродистой стали,

феррит + перлит, × 250:

а – закалка непосредственно после цементации;

б – закалка после регенерации зерна

В сердцевине цементированной детали из легированной глубоко-прокаливающейся стали образуется мартенсит (рис. 7). Ввиду низкого содержания углерода в таком мартенсите он не обладает хрупкостью.

Рис. 7. Микроструктура сердцевины цементированной

легированной стали, × 250

Во всех случаях цементированные детали после закалки для снятия внутренних напряжений подвергают отпуску при низкой температуре (150–200°С).

В результате такой обработки (закалка + низкий отпуск) поверхность должна иметь твердость 58–62 HRC, а сердцевина – 25–35 HRC для легированных и менее

Дата добавления: 2015-06-27 ; Просмотров: 1868 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Цемента́ция ста́ли — поверхностное диффузионное насыщение стали углеродом с целью повышения твёрдости, износоустойчивости.

Цементации подвергают низкоуглеродистые (обычно до 0,25 % C) и легированные стали, процесс в случае использования твёрдого карбюризатора проводится при температурах 900—950 °С, при газовой цементации (газообразный карбюризатор) — при 850—900 °С.

После цементации изделия подвергают термообработке, приводящей к образованию мартенситной фазы в поверхностном слое изделия (закалка на мартенсит) с последующим отпуском для снятия внутренних напряжений.

  • в твёрдом карбюризаторе
  • в газовом карбюризаторе
  • в кипящем слое
  • в растворах электролитов
  • в пастах

Содержание

Цементация в твёрдом карбюризаторе [ править | править код ]

В этом процессе насыщающей средой является древесный уголь в зёрнах поперечником 3,5—10 мм или каменноугольный полукокс и торфяной кокс, к которым добавляют активизаторы. Этот процесс известен по крайней мере с XII века [1] .

Технология процесса состоит в следующем: Загрузка деталей в стальной ящик с герметичным песчаным затвором. Укладка деталей производится таким образом, чтобы они были покрыты карбюризатором со всех сторон, не соприкасались друг с другом и стенками ящика. Далее ящик герметично закрывается песчаным затвором или замазывается огнеупорной глиной и загружается в печь.

Стандартный режим: 900—950 °С, 1 час выдержки (после прогрева ящика) на 0,1 мм толщины цементированного слоя. Для получения 1 мм слоя — выдержка 10 часов.

При «ускоренном» режиме цементация производится при 980 градусах. Выдержка уменьшается в два раза, и для получения слоя 1 мм требуется 5 часов. Но при этом образуется цементитная сетка, которую придётся убирать многократной нормализацией металла.

Цементация в газовом карбюризаторе [ править | править код ]

Этот процесс осуществляют в среде газов, содержащих углерод. Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твёрдом карбюризаторе, поэтому её широко применяют на заводах, изготовляющих детали массовыми партиями.

В случае с газовой цементацией можно получить заданную концентрацию углерода в слое; сокращается длительность процесса, так как отпадает необходимость прогрева ящиков, наполненных малотеплопроводным карбюризатором; обеспечивается возможность полной механизации и автоматизации процессов, и значительно упрощается последующая термическая обработка деталей, так как закалку можно проводить непосредственно из цементационной печи.

Цементация в кипящем слое [ править | править код ]

Процесс цементации в кипящем слое проходит в атмосфере эндогаза с добавкой метана. Кипящий слой представляет собой гетерогенную систему, в которой за счёт проходящего потока газа через слои мелких (0,05-0,20 мм) частиц (чаще корунда) создаётся их интенсивное перемешивание, что внешне напоминает кипящую жидкость. Частицы корунда располагаются на газораспределительной решётке печи. При определённой скорости прохождения восходящего потока газа (выше критической скорости) частицы становятся подвижными, и слой приобретает некоторые свойства жидкости (псевдоожиженный слой). В этом состоянии сцепление между частицами нарушено, они становятся подвижными и опираются не на решётку, а на поток газа. Достоинствами процесса цементации в кипящем слое являются: сокращение длительности процесса вследствие большой скорости нагрева и высокого коэффициента массоотдачи углерода; возможность регулирования углеродного потенциала атмосферы в рабочей зоне печи; уменьшение деформации и коробления обрабатываемых деталей за счёт равномерного распределения температуры по всему объёму печи. Процесс цементации в кипящем слое может быть использован на заводах мелкосерийного и единичного производства.

Цементация в растворах электролитов [ править | править код ]

Использование анодного эффекта для диффузионного насыщения обрабатываемой поверхности углеродом в многокомпонентных растворах электролитов — один из видов скоростной электрохимико-термической обработки (анодный электролитный нагрев) малогабаритных изделий. Анод-деталь при наложении постоянного напряжения в диапазоне от 150 до 300 В разогревается до температур 450—1050°С. Достижение таких температур обеспечивает сплошная и устойчивая парогазовая оболочка, отделяющая анод от электролита. Для обеспечения цементации в электролит, кроме электропроводящего компонента, вводят углеродсодержащие вещества-доноры (глицерин, ацетон, этиленгликоль, сахароза и другие).

Цементация в пастах [ править | править код ]

Цементация с нанесением на науглероживаемую металлическую поверхность С-содержащих материалов в виде суспензии, обмазки или шликера, сушкой и последующим нагревом изделия ТВЧ или током промышленной частоты. Толщина слоя пасты должна быть в 6—8 раз больше требуемой толщины цементованного слоя. Температуру цементации устанавливают 910—1050 °С.

При цементации производят насыщение поверхностного слоя детали атомами углерода. Для деталей используют низкоуглеродистые стали с содержанием углерода 0,1-0,25 %, обладающие высокой ударной вязкостью и низкой закаливаемостью. Различают два основных способа цементации (насыщения): в твердой или газовой среде (карбюризаторе). При цементации в твердом карбюризаторе изделия с припуском на шлифование укладывают в металлические ящики и пересыпают древесным углем с добавками углекислых солей. Сверху ящик закрывают крышкой и щели замазывают огнеупорной глиной. Ящики укладывают в печь и выдерживают при температуре 930-950 °С. При этой температуре за счет кислорода воздуха, находящегося между кусочками карбюризатора, происходит неполное горение угля и образуется окись углерода, которая далее разлагается с образованием активного атомарного углерода. Образующиеся атомы углерода адсорбируются поверхностью изделий и диффундируют вглубь металла. Углекислые соли в карбюризаторе при нагреве разлагаются и активируют процесс, пополняя количество атомарного углерода.

Глубина цементованного слоя составляет обычно около 0,5-1,5 мм, а содержание углерода в нем достигает до 1-1,2 %, на что требуется значительное время – примерно 1 час на каждые 0,1-0,12 мм толщины слоя.

Газовую цементацию ведут в смеси газов-углеводородов: метана, этана, бутана и др., а также окиси углерода. Такие газы и их смеси получают в специальных газогенераторах, а также непосредственно из газовой магистрали. Процесс насыщения из газовой среды идет примерно вдвое быстрее, чем из твердого карбюризатора. Дальнейшего ускорения процесса цементации можно достигнуть, нагревая детали в газовой среде с помощью высокочастотного индуктора и повышая при этом температуру по сравнению с обычной. Например, продолжительность цементации деталей из стали 15XHTPA для образования слоя толщиной в 1 мм оказалась:

– при цементации в твердом карбюризаторе (920 °С) – 8 часов;

– при газовой цементации с высокочастотным нагревом (1050°С)-

Достоинством газовой цементации по сравнению с цементацией в твердом карбюризаторе является также и улучшение качества деталей вследствие уменьшения перегрева.

Цементованный слой имеет переменную концентрацию углерода по глубине, убывающую от поверхности к сердцевине детали. В связи с этим после медленного охлаждения цементованной детали структура ее поверхностного слоя соответствует-заэвтектоидной стали и плавно переходит в структуру малоуглеродистой сердцевины (рис.3. 6.). Схема зарисовки приведена на рис. 3.7.

После диффузионного насыщения необходима термическая обработка деталей, которая устраняет последствия перегрева деталей при цементации, повышает твердость поверхности и устраняет цементитную сетку. Так как цементованные детали содержат различное количество углерода в наружном слое (до 1,2 % С) и в сердцевине (менее 0,25 % С), то для получения оптимальных свойств деталей термическая обработка должна состоять из трех этапов:

1) первая закалка (или нормализация) с 880-900 °С – для устранения последствий перегрева, получающегося при длительной выдержке деталей в печи;

2) вторая закалка с 760-780 °С – для придания цементованному слою максимальной твердости;

3) низкий отпуск при 160-180 °С – для выравнивания остаточных на-

Рис. 3.6. Микроструктура цементованного слоя стали 20 после медленного охлаждения с температуры цементации (х725).

Рис. 3.7. Схема зарисовки стали 20 после цементации.

Двойная закалка дает наилучше механические свойства, но вызывает больше внутренние напряжения и деформации деталей, особенно в тех случаях, когда детали имеют сложную конфигурацию или еслиони изготовлены из легированной стали. Поэтому часто предпочитают производить только одну закалку с 820-860 °С с последующим низким отпуском. Это особенно целесообразно после газовой цементации, когда перегрев стали не велик, а также при обработке мелкозернистых сталей, устойчивых против перегрева.

Для деталей, от которых требуется только поверхностная твердость, а остальные механические свойства не имеют большого значения, применяют закалку непосредственно с цементационного нагрева, то есть от 900-950 °С с подстуживанием перед закалкой до 750-800 °С. Выросшее при цементации зерно аустенита дает крупноигольчатый мартенсит в поверхностном слое и крупнозернистую структуру в сердцевине. Такую обработку рекомендуется назначать только после газовой цементации и для наследственно мелкозернистых сталей.

Твердость цементованной поверхности после термообработки обычно не ниже НRС 58-64.

На рис.3. 8. приведена микроструктура стали 20 после диффузионного насыщения при 930 °С, нормализации при 830 °С и последующей закалки и низкого отпуска, а схема зарисовки приведена на рис. 3.9.

Наряду с нелегированными низкоуглеродистыми сталями применяют малоуглеродистые (до 0,25 % С) низколегированные стали, содержащие никель, хром, вольфрам, титан и др. Применение легированной стали повышает прочность сердцевины деталей, но не дает каких-либо преимуществ по свойствам цементованной поверхности.

Рис. 3. 8. Микроструктура стали 20 после цементации и термической

обработки (х725)(поверхность – мартенсит, сердцевина – феррит + перлит).

Рис.3. 9. Схема зарисовки микроструктуры стали 20 после цементации

Оцените статью