Все металлы обладают высокой теплопроводностью

Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Понятие коэффициента теплопроводности

Для обозначения рассматриваемого значения применяется символ λ – количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.

Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:

  1. Температура, измеряемая в Кельвинах.
  2. Показатель электропроводности.

Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.

Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.
Читайте также:  Схема подключения бетономешалки на 220 вольт

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Высокая электропроводность – металл

К металлам относятся вещества, обладающие хорошей электрической проводимостью с удельным сопротивлением р 10 – 7 – – 10 – 8 ом-м, высокой теплопроводностью, вязкостью, ковкостью. Высокая электропроводность металлов объясняется тем, что валентные электроны принадлежат не отдельным атомам, а всей кристаллической решетке в целом. Эти электроны называют свободными. [31]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебания ионов ( атомов), что затрудняет прямолинейное движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность резко возрастает. Около абсолютного нуля сопротивление многих металлов практически отсутствует. Высокая теплопроводность металлов обусловливается как большой подвижностью свободных электронов, так и колебательным движением ионов ( атомов), вследствие чего происходит быстрое выравнивание температуры в массе металла. [32]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые перемещаются в потенциальном поле решетки. С повышением темпера гуры усиливаются колебания ионов ( атомов), образуются вакансии и нарушается правильная периодичность потенциального поля, что затрудняет движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность возрастает. У некоторых металлов в результате образования пар электронов, движущихся упорядоченно при очень низких температурах ( 20К), электропроводность обращается в бесконечное и, – явление сверхпроводимости. Высокая теплопроводность металлов обусловливается большой подвижностью свободных электронов и в меньшей степени колебательным движением ионов. [33]

В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т.е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом. [34]

Все металлы обладают высокой электропроводностью. Причина высокой электропроводности металлов заключается в слабой связи электронного газа с положительно заряженными ионами. Достаточно приложить небольшую разность электрических потенциалов к концам металлического тела, чтобы вызвать перемещение электронного газа – электрический ток. [36]

Положительно заряженные атомы валентная связи), окружены как бы электронным газом, который может свободно передвигаться. Этим объясняется высокая электропроводность металлов . [37]

Свободные электроны перемещаются по объему металла, как бы не замечая ионов, находящихся в узлах кристаллической решетки. Этим и объясняется высокая электропроводность металлов . [38]

Читайте также:  Как самому сделать чудо лопату

За счет обобществления электронов атомы становятся положительно заряженными ионами, которые обтекаются электронным газом, что и обусловливает связи между атомами ( ионами) в кристаллической решетке. Наличие электронного газа объясняет, в частности, высокую электропроводность металлов . [39]

Металлическая связь возникает при образовании из внешних ( относительно слабо связанных с ядром) электронов отрицательно заряженного электронного газа, в результате чего положительно заряженные ионы создают плотную, но пластичную кристаллическую решетку. Электроны, свободно перемещаясь между атомами, обеспечивают высокую электропроводность металлов . [40]

Металлическая связь осуществляется путем образования из внешних, относительно слабо связанных с ядром электронов отрицательно заряженного электронного газа, организующего положительно заряженные ионы в – плотную, но довольна пластичную кристаллическую решетку. Электроны легко перемещаются от атома к атому, обусловливая высокую электропроводность металла . Большинство металлов имеет одну из трех кристаллических решеток: гексагональную плотноупакованную, гранецентрированную кубическую или объ-емноцентрированную кубическую. Прочность металлической связи увеличивается с повышением концентрации электронного газа. [41]

Наличие свободных электронов во всех металлических структурах обусловливает существование некоторых общих свойств металлов. Так, со свободой перемещения электронов связаны хорошая теплопроводность и высокая электропроводность металлов . [42]

Таким образом, в металлах имеются положительно заряженные ионы, электроны и небольшое количество нейтральных атомов. Этот особый тип химической связи и обусловливает наличие определенных физических свойств. Высокая электропроводность металлов объясняется наличием свободных электронов. В электрическом поле беспорядочное движение электронов становится направленным: они перемещаются от отрицательного полюса к положительному. [43]

У металлов над полностью заполненными энергетическими зонами расположена зона, заполненная электронами частично. У Na частично заполненная зона образуется в результате расщепления наполовину заполненного уровня 3s, а в Mg – в результате расщепления заполненного уровня 3s и пустого уровня Зр. Высокая электропроводность металлов объясняется наличием частично заполненной зоны. Носителями тока являются здесь электроны в этой зоне, поскольку в ней имеется много свободных энергетических состояний. [44]

Металлическая связь характеризуется взаимодействием положительных ионов кристаллической решетки металла и свободных электронов, не связанных с определенными ионами и свободно перемещающихся в пределах кристаллической решетки. Электроны не связаны с определенными ионами и свободно перемещаются в металле. Этим определяется высокая электропроводность металлов . Неметаллы, такие, как кислород, сера, галогены, принимающие электроны от металла, являются окислителями. Легкость отдачи электронов их атомами определяет химическую активность металлов. По химической активности металлы различаются между собой. [45]

17. Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

У металлических сплавов удельная теплоемкость находится в пределах 100-2000 Дж/(кг*К). У большинства металлов теплоемкость составляет 300–400 Дж/(кг*К). Теплоемкость метал

Электрические свойства материалов характеризуются наличием носителей зарядов электронов или ионов и свободой их передвижения под действием электрического поля.

Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.

Читайте также:  Домофон как подключить трубку

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи – отрицателен. При нагреве металлов концентрация носителей зарядов – электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов.

Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье.

Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Теплота в твердых телах переносится электронами и фононами.

Механизм передачи теплоты, в первую очередь, определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи – фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность 17б осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление. Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием.

Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Чем больше размеры зерен, тем выше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом – основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.

Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза

Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность. Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м*К, что почти вдвое меньше по сравнению с серым чугуном.

При нагреве теплопроводности сталей разных классов сближаются. Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(мОК).

Теплопроводность может меняться также, как и электропроводность в случае, если электронная теплопроводность металла составляет l e. Тогда любые изменения, происходящие в химическом и фазовом составе и структуре сплава влияют на теплопроводность также, как и на электропроводность (по правилу Видемана-Франца).

При отдалении состава сплава от чистых компонентов происходит понижение теплопроводности. Исключение составляют, например, медно-никелевые сплавы, в которых происходят обратные явления.