Виды пламени газовой горелки

Пла́мя — раскаленная газообразная среда, образующаяся при горении и электроразрядах, состоящая в значительной степени из частично ионизированных частиц, в которой происходят химические взаимодействия и физико-химические превращения составных частиц среды (в т.ч. горючего, окислителя, примесных частиц, продуктов их взаимодействия). Сопровождается интенсивным излучением (в УФ, ИК, видимой части спектра – «свечением») и выделением тепла.

В русском языке нет четкого смыслового разделения слов пламя и огонь, однако слово огонь традиционно связано с описанием процессов горения, тогда как пламя имеет более общее употребление, в том числе для процессов, не связанных с горением: молнией, электродугой, свечением вакуумных ламп и так далее.

Иногда в научной литературе пламя относят к «холодной/низкотемпературной плазме», поскольку по существу оно представляет собой газ, состоящий из термически ионизированных частиц с небольшой величиной заряда (как правило, не более ±2-3), тогда как высокотемпературной плазмой называют состояние вещества, при котором ядра атомов и их электронные оболочки сосуществуют раздельно.

Среда пламени содержит заряженные частицы (ионы, радикалы), что обусловливает наличие электропроводности пламени и его взаимодействие с электромагнитными полями. На этом принципе построены приборы, способные с помощью электромагнитного излучения приглушить пламя, оторвать от горючих материалов или изменить его форму [1] .

Содержание

Цвет пламени [ править | править код ]

Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN ±n , красно-оранжевая — излучением частиц С2 ±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx ±n , H2O ±n , HO ±n , CO2 ±n , CO ±n ) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).

Температура пламени [ править | править код ]

  • Температура воспламенения для большинства твёрдых материалов — 300 °С.
  • Температура пламени в горящей сигарете — 250–300 °С. [источник не указан 539 дней]
  • Температура пламени спички 750–1400 °С; при этом 300 °С — температура воспламенения дерева, а температура горения дерева равняется примерно 500–800 °С.
  • Температура горения пропан-бутана — 800–1970 °С.
  • Температура пламени керосина — 800 °С, в среде чистого кислорода — 2000 °С.
  • Температура горения бензина — 1300–1400 °С.
  • Температура пламени спирта не превышает 900 °С.
  • Температура горения магния — 2200 °С; значительная часть излучения в УФ-диапазоне.

Наиболее высокие известные температуры горения: дицианоацетилен C4N2 5’260 К (4’990 °C) в кислороде и до 6’000 К (5’730 °C) в озоне [2] ; дициан (CN)2 4’525 °C в кислороде [3] .

Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.

Классификация [ править | править код ]

Пламя классифицируют по:

  • агрегатному состоянию горючих веществ: пламя газообразных, жидких, твёрдых и аэродисперсных реагентов;
  • излучению: светящиеся, окрашенные, бесцветные;
  • состоянию среды горючее–окислитель: диффузионные, предварительно перемешанных сред (см. ниже);
  • характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
  • температуре: холодные, низкотемпературные, высокотемпературные;
  • скорости распространения: медленные, быстрые;
  • высоте: короткие, длинные;
  • визуальному восприятию: коптящие, прозрачные, цветные.
Читайте также:  Поставить заклепку своими руками

Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):

  1. тёмная зона (300—350 °C), где горение не происходит из-за недостатка окислителя;
  2. светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500—800 °C);
  3. едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900—1500 °C).

Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.

Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей — от 0,03 до 15 м/с.

Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении — до 100 м/с; при взрывном горении — от 300 до 1000 м/с; при детонационном горении — свыше 1000 м/с.

Окислительное пламя [ править | править код ]

Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются.

Восстановительное пламя [ править | править код ]

Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.

Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO4. С помощью платиновой петли забирают BaSO4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным.

Цвет пламени зависит от нескольких факторов. Наиболее важны: температура, наличие в пламени микрочастиц и ионов, определяющих эмиссионный спектр.

Применение [ править | править код ]

Пламя (окислительное и восстановительное) используется в аналитической химии, в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки.

Пламя в условиях невесомости [ править | править код ]

В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры, поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.

В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.

См. также [ править | править код ]

  • Горение, в том числе беспламенное горение.
  • Огонь
  • Пирохимический анализ — методы обнаружения химических элементов по различному окрашиванию пламени.

Литература [ править | править код ]

Тидеман Б. Г., Сциборский Д. Б. Химия горения. — Л. , 1935.

4.2. Виды пламени

В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени:

  • нормальное;
  • окислительное;
  • науглероживающее

В зависимости от вида свариваемого материала сварочное пламя регулируют следующим образом:

Свариваемый металл

Нормальное пламя Окислительное пламя Сталь – + – Чугун + – Медь – + – Латунь – – + Алюминий + +

Табл. 6. Выбор вида сварочного пламени (18)

«+» – хорошо сваривается; 0—возможно; «-« – плохо свариваются

Нормальное пламя получают тогда, когда в горелку на один объем кислорода подают несколько больше от 1,1 до 1,3 объема ацетилена. Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в восстановительной (рабочей) зоне.

Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны.

Читайте также:  Кондукторы и шаблоны для мебели

Рис. 60. Строение нормального пламени (18)

Окислительное пламя получается при избытке кислорода, при подаче в горелку на один объем ацетилена более 1,3 объема кислорода. При этом ядро приобретает конусообразную форму, значительно сокращается по длине, становится с менее резкими очертаниями и приобретает более бледную окраску. Сокращаются по длине также рабочая зона и факел. Все пламя приобретает синевато-фиолетовую окраску. Пламя горит с шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше температуры нормального пламени. Окислительное пламя можно применять при сварке латуни и пайке твердыми припоями.

Такое пламя сильно окисляет свариваемый металл, что приводит к получению хрупкого и пористого шва и выгоранию полезных примесей кремния и марганца. Можно применять окислительное пламя при сварке сталей, но при этом необходимо пользоваться присадочной проволокой, в которой повышено содержание марганца и кремния, являющихся раскислителями.

Рис. 61. Строение окислительного пламени (18)

Науглероживающее пламя получается при избытке ацетилена, когда в горелку на один
объем ацетилена подается 0,95 и менее объема кислорода. Ядро такого пламени теряет резкость своего очертания, на конце его появляется зеленый венчик, по которому судят об избытке ацетилена. Рабочая зона значительно светлее и почти сливается с ядром, а факел приобретает желтоватую окраску. При большем избытке ацетилена пламя начинает коптить, так как в нем ощущается недостаток кислорода, необходимого для полного сгорания ацетилена. По сварочному участку летают черные хлопья сажи. Избыточный ацетилен разлагается на водород и углерод. Углерод переходит в металл шва, поэтому ацетиленистое пламя будет науглероживать металл шва.

Температура науглероживающего пламени ниже, чем окислительного и нормального.

Рис. 62. Строение науглероживающего пламени (18)

Рис. 63. Науглероживающее пламя. Фото автора

Характер сварочного пламени сварщик определяет на глаз по форме и окраске пламени, а также на слух.

При регулировке сварочного пламени необходимо обращать внимание на правильность подбора расхода горючего газа и кислорода.

Сварочное пламя получается при сгорании смеси горючих газов (или паров горючих жидкостей) и кислорода в мундштуке сварочной горелки. В зависимости от того, какой газ для газовой сварки применяют и от того, в каком соотношении с кислородом он сгорает, различают три вида сварочного пламени: нормальное (или восстановительное), окислительное, науглероживающее.

Структура сварочного пламени

На рисунке показана структура сварочного пламени, которое состоит из трёх зон: ядра пламени (поз.1), восстановительной зоны (поз.2) и окислительной зоны (поз.3).

Ядро пламени состоит из раскалённого кислорода и продуктов распада ацетилена. Ядро имеет достаточно чёткий контур и очень яркое свечение. Длина ядра может быть различной, в зависимости от давления и скорости подачи горючей смеси. Чем больше давление и скорость подачи газа, тем больше длина ядра. Горение газов начинается на внешней стороне ядра и продолжается в восстановительной зоне.

Во второй, восстановительной зоне ацетилен проходит первую стадию сгорания в кислороде, поступающего из кислородного газосварочного баллона. Сгорание происходит по реакции:

При этом сгорание углерода происходит не полностью, а водород в этой зоне не сгорает. Восстановительная зона имеет самую высокую температуру (3000-3200°C) на расстоянии 3-5мм от конца ядра и обладает восстановительными свойствами. Этой частью пламени производят газовую сварку, нагревая и расплавляя металл. При сварке частицы угарного газа и водорода восстанавливают металлы из их окислов. Поэтому вторая зона и получила название восстановительной зоной, а также сварочной или рабочей.

В третьей зоне, факеле, происходит окончательное сгорание ацетилена (точнее, продуктов его распада – угарного газа и водорода) в кислороде из окружающего воздуха по реакции:

Углекислый газ и вода при высоких температурах взаимодействуют со свариваемым металлом, окисляя его. Из-за этого зона факела получила название окислительной зоны.

Для полного сгорания одного объёма ацетилена необходимо два с половиной объёма кислорода. Один объём кислорода поступает из кислородного баллона в горелку, где смешивается с ацетиленом. Ещё полтора объёма кислорода поступает из окружающего воздуха.

Нормальный (восстановительный) вид сварочного пламени

Нормальным считается сварочное пламя, при сгорании ацетилена в кислороде в соотношении О2/С2Н2=1. Но на практике кислород подаётся с примесями, не чистый. Поэтому, нормальным получается пламя, при соотношении кислорода и ацетилена в пределах 1-1,3. Такой вид пламени положительно влияет на раскисление расплавленного металла и достижение высокого качества сварки.

Читайте также:  Рейтинг недорогих перфораторов для дома

Сварка большинства металлов и сплавов выполняется нормальным пламенем, особенно часто при сварке низкоуглеродистых сталей. При газовой сварке алюминия применяют нормальное сварочное пламя с небольшим избытком ацетилена.

Окислительный вид сварочного пламени

Окислительное сварочное пламя получается при избытке кислорода. Т.е. когда соотношение кислорода к ацетилену больше чем 1,3. Ядро окислительного пламени короче, чем у восстановительного. У него более резкий контур и оно менее яркое. Восстановительная зона и факел также короче по длине, чем у нормального пламени.

Температура окислительного пламени немного выше, чем у нормального. Такой вид пламени не подходит для сварки сталей, т.к. избыток кислорода способствует окислению металла, в результате чего образуются множественные дефекты в сварном шве в виде пор. Сам шов получается хрупким. Окислительное пламя часто используют при сварке латуни.

Науглероживающий вид сварочного пламени

Если в сварочной горелке соотношение кислорода к ацетилену меньше 1, формируется науглероживающее сварочное пламя. Ядро такого пламени не имеет резкого контура, а вершина ядра окрашивается в зелёный цвет, который свидетельствует об избыточном количестве ацетилена.

Восстановительная зона в таком пламени светлее, чем в нормальном пламени, а факел имеет жёлтую окраску. Не видно чёткой границы между зонами. Излишки ацетилена распадаются на углерод и водород. Углерод легко переходит в сварочную ванну, поэтому, науглероживающее пламя используют, если есть необходимость науглероживания металла сварного шва или для восполнения углерода, если при сварке происходит его угар. Такое пламя хорошо подходит для газовой сварки чугуна.

Характеристики сварочного пламени

К тепловым характеристикам сварочного пламени относятся температура, эффективная тепловая мощность, зона распределения нагрева свариваемого металла. Эти показатели определяются от того, какой газ используется при сварке, от чистоты подаваемого кислорода и от соотношения объема кислорода к объёму горючего газа в горелке.

Температура газового пламени различна в разных зонах. Максимума она достигает в конце первой зоны (ядра), 3200°C для ацетилена. Эффективной тепловой мощностью сварочного пламени называется количество теплоты, которое пламя способно передать металлу в единицу времени. Этот показатель повышается, если возрастает расход газа.

Тепловая мощность – важная характеристика пламени, измеряемая в л/ч. Кроме тепловой мощности есть мощность удельная. Удельная тепловая мощность это расход горючего газа (в л/ч), приходящийся на миллиметр свариваемого металла. Необходимая мощность сварочного пламени определяется, исходя из теплопроводности свариваемого металла и его толщины. При сварке низколегированных сталей, углеродистых сталей, сварки чугуна, алюминия, а также при сварке медных сплавов удельная мощность составляет 100-120л/ч. При сварке меди удельная мощность выше из-за её теплопроводности и составляет 150-200л/ч.

У газосварочного пламени довольно большая область нагрева свариваемого металла. Тепловой поток при газовой сварке рассредоточен. Наибольший поток тепла получается по центру пламени и он, примерно, в 10 раз меньше, чем у электрической сварочной дуги при их одинаковой тепловой мощности. Поэтому, при газовой сварке нагрев металла происходит медленнее, чем при ручной дуговой сварке.

Регулировка сварочного пламени

Для регулировки сварочного пламени большое значение имеет выбор давления кислорода. Давление кислорода необходимо подбирать в соответствии номеру наконечника, руководствуясь паспортом на сварочную горелку. Если выбрано слишком большое давление, газовая смесь вытекает очень быстро и пламя отрывается от мундштука. При этом пламя начинает выдувать и разбрызгивать жидкий металл за пределы сварочной ванны.

При давлении кислорода ниже требуемого, скорость подачи газовой смеси падает, сварочное пламя становится короче и возникает опасность возникновения обратного удара, который может привести к взрыву ацетиленового генератора, если газосварочный пост не оборудован водяным предохранительным затвором.

Из короткого окислительного пламени можно получить нормальное. Для этого необходимо медленно и постепенно увеличивать подачу ацетилена до появления яркого пламени и чёткого его ядра.

Из науглероживающего пламени можно получить нормальное, если постепенно перекрывать подачу ацетилена то тех пор, пока не исчезнет зеленоватый цвет пламени на вершине ядра.

“>