Узд контроль сварных швов мостов

Для обеспечения безопасных условий эксплуатации различных объектов со сварными соединениями все швы необходимо подвергать регулярной проверке. Вне зависимости от их новизны или давнего срока эксплуатации металлические соединения проверяются различными методами дефектоскопии. Наиболее действенным методом является УЗД – ультразвуковая диагностика, которая превосходит по точности полученных результатов рентгенодефектоскопию, гамма-дефектоскопию, радио-дефектоскопию и др.

Это далеко не новый (впервые УЗК проведен в 1930 году) метод, но является очень популярным и используется практически повсеместно. Это обусловлено тем, что наличие даже небольших дефектов сварочных соединений приводит к неизбежной утрате физических свойств, таких как прочность, а со временем к разрушению соединения и непригодности всей конструкции.

Теория акустической технологии

Ультразвуковая волна при УЗД не воспринимается ухом человека, но она является основой для многих диагностических методов. Не только дефектоскопия, но и другие диагностические отрасли используют различные методики на основе проникновения и отражения ультразвуковых волн. Особенно они важны для тех отраслей, в которых основным является требование о недопустимости нанесения вреда исследуемому объекту в процессе диагностики (например, в диагностической медицине). Таким образом, ультразвуковой метод контроля сварных швов относиться к неразрушающим методам контроля качества и выявления места локализации тех или иных дефектов (ГОСТ 14782-86).

Качество проведения УЗК зависит от многих факторов, таких как чувствительность приборов, настройка и калибровка аппарата, выбор более подходящего метода проведения диагностики, от опыта оператора и других. Контроль швов на пригодность (ГОСТ 14782-86) и допуск объекта к эксплуатации не возможен без определения качества всех видов соединений и устранения даже мельчайшего дефекта.

Определение

Ультразвуковой контроль сварных швов – это неразрушающий целостности сварочных соединений метод контроля и поиска скрытых и внутренних механических дефектов не допустимой величины и химических отклонений от заданной нормы. Методом ультразвуковой дефектоскопии (УЗД) проводится диагностика разных сварных соединений. УЗК является действенным при выявлении воздушных пустот, химически не однородного состава (шлаковые вложения в металле) и выявления присутствия не металлических элементов.

Принцип работы

Ультразвуковая технология испытания основана на способности высокочастотных колебаний (около 20 000 Гц) проникать в металл и отражаться от поверхности царапин, пустот и других неровностей. Искусственно созданная, направленная диагностическая волна проникает в проверяемое соединение и в случае обнаружения дефекта отклоняется от своего нормального распространения. Оператор УЗД видит это отклонение на экранах приборов и по определенным показаниям данных может дать характеристику выявленному дефекту. Например:

  • расстояние до дефекта – по времени распространения ультразвуковой волны в материале;
  • относительный размер дефекта – по амплитуде отраженного импульса.

На сегодняшний день в промышленности применяют пять основных методов проведения УЗК (ГОСТ 23829 – 79), которые отличаются между собой только способом регистрации и оценки данных:

  • Теневой метод. Заключается в контроле уменьшения амплитуды ультразвуковых колебаний прошедшего и отраженного импульсов.
  • Зеркально-теневой метод. Обнаруживает дефекты швов по коэффициенту затухания отраженного колебания.
  • Эхо-зеркальный метод или “Тандем”. Заключается в использовании двух аппаратов, которые перекликаются в работе и с разных сторон подходят к дефекту.
  • Дельта-метод. Основывается на контроле ультразвуковой энергии, переизлученной от дефекта.
  • Эхо-метод. Основан на регистрации сигнала отраженного от дефекта.

Откуда колебания волны?

Практически все приборы для диагностики методом ультразвуковых волн устроены по схожему принципу. Основным рабочим элементом является пластина пьезодатчика из кварца или титанита бария. Сам пьезодатчик прибора для УЗД расположен в призматической искательной головке (в щупе). Щуп располагают вдоль швов и медленно перемещают, сообщая возвратно-поступательное движение. В это время к пластине подводится высокочастотный ток (0,8—2,5 Мгц), вследствие чего она начинает излучать пучки ультразвуковых колебаний перпендикулярно своей длине.

Отраженные волны воспринимаются такой же пластиной (другим принимающим щупом), которая преобразует их в переменный электрический ток и он сразу отклоняет волну на экране осциллографа (возникает промежуточный пик). При УЗК датчик посылает переменные короткие импульсы упругих колебаний разной длительности (настраиваемая величина, мкс) разделяя их более продолжительными паузами (1—5 мкс). Это позволяет определить и наличие дефекта, и глубину его залегания.

Процедура проведения дефектоскопии

  1. Удаляется краска и ржавчина со сварочных швов и на расстоянии 50 – 70 мм с двух сторон.
  2. Для получения более точного результата УЗД требуется хорошее прохождение ультразвуковых колебаний. Поэтому поверхность металла около шва и сам шов обрабатываются трансформаторным, турбинным, машинным маслом или солидолом, глицерином.
  3. Прибор предварительно настраивается по определенному стандарту, который рассчитан на решения конкретной задачи УЗД. Контроль:
  4. толщины до 20 мм – стандартные настройки (зарубки);
  5. свыше 20 мм – настраиваются АРД-диаграммы;
  6. качества соединения – настраиваются AVG или DGS-диаграммы.
  7. Искатель перемещают зигзагообразно вдоль шва и при этом стараются повернуть вокруг оси на 10-15 0 .
  8. При появлении устойчивого сигнала на экране прибора в зоне проведения УЗК, искатель максимально разворачивают. Необходимо проводить поиск до появления на экране сигнала с максимальной амплитудой.
  9. Следует уточнить: не вызвано ли наличие подобного колебания отражением волны от швов, что часто бывает при УЗД.
  10. Если нет, то фиксируется дефект и записываются координаты.
  11. Контроль сварных швов проводится согласно ГОСТу за один или два прохода.
  12. Тавровые швы (швы под 90 0) проверяются эхо-методом.
  13. Все результаты проверки дефектоскопист заносит в таблицу данных, по которой можно будет легко повторно обнаружить дефект и устранить его.

Иногда для определения более точного характера дефекта характеристики от УЗД не хватает и требуется применить более развернутые исследования, воспользовавшись рентгенодефектоскопией или гамма-дефектоскопией.

Рамки применения данной методики при выявлении дефектов

Контроль сварочных швов, основанный на УЗД довольно четкий. И при правильно проведенной методике испытания шва дает полностью исчерпывающий ответ по поводу имеющегося дефекта. Но рамки применения УЗК так же имеет.

С помощью проведения УЗК возможно выявить следующие дефекты:

  • Трещины в околошовной зоне;
  • поры;
  • непровары шва;
  • расслоения наплавленного металла;
  • несплошности и несплавления шва;
  • дефекты свищеобразного характера;
  • провисание металла в нижней зоне сварного шва;
  • зоны, пораженные коррозией,
  • участки с несоответствием химического состава,
  • участки с искажением геометрического размера.
Читайте также:  Диски для резки кафельной плитки

Подобную УЗД возможно осуществить в следующих металлах:

  • чугун;
  • медь;
  • аустенитные стали;
  • легированные стали;
  • и в металлах, которые плохо проводят ультразвук.

УЗД проводится в геометрических рамках:

  • На максимальной глубине залегания шва – до 10 метров.
  • На минимальной глубине (толщина металла) – от 3 до 4 мм.
  • Минимальная толщина шва (в зависимости от прибора) – от 8 до 10 мм.
  • Максимальная толщина металла – от 500 до 800 мм.

Проверки подвергаются следующие виды швов:

  • плоские швы;
  • продольные швы;
  • кольцевые швы;
  • сварные стыки;
  • тавровые соединения;
  • сварные трубы.

Пескоструйная очистка поможет избавиться от многих загрязнений металла. Подробнее об этом читайте здесь.

Основные области использования данной методики

Не только в промышленных отраслях используют ультразвуковой метод контроля целостности швов. Данную услугу – УЗД заказывают и в частном порядке при строительстве или реконструкции домов.

УЗК чаще всего применяется:

  • в области аналитической диагностики узлов и агрегатов;
  • когда необходимо определить износ труб в магистральных трубопроводах;
  • в тепловой и атомной энергетике;
  • в машиностроении, в нефтегазовой и химической промышленности;
  • в сварных соединениях изделий со сложной геометрией;
  • в сварных соединениях металлов с крупнозернистой структурой;
  • при установке (сварки соединений) котлов и узлов оборудования, которое поддается влиянию высоких температур и давления или влиянию различных агрессивных сред;
  • в лабораторных и полевых условиях.

Узд контроль сварных швов мостовИспытания в полевых условиях

Научно-исследовательский институт мостов (с 2005 года — Федеральное государственное унитарное предприятие "Научно-исследовательский институт мостов и дефектоскопии Федерального агентства железнодорожного транспорта") был создан в декабре 1946 года по приказу Министерства путей сообщения в соответствии с Постановлением Совета Министров СССР.

Необходимость постановки в НИИ мостов исследований по разработке методов и средств неразрушающего контроля сварных соединений в заводских и полевых условиях определялась комплексом работ по внедрению сварки в мостостроении.

В 1947 году в Институте создается лаборатория радио- и гамма-графирования, которая впоследствии была преобразована в лабораторию, а затем — отдел ультразвуковой дефектоскопии на железнодорожном транспорте.

Исследования в области неразрушающего контроля сварки были поставлены в то время, когда еще не была известна принципиальная возможность ультразвукового контроля сварных швов вообще. Работы выполнялись в тесном содружестве с НИИХИММАШ, МВТУ им. Н.Э. Баумана и ЦНИИТМАШ. Параллельно обосновываются принципы построения специализированных дефектоскопов для контроля сварных соединений и создаются их первые образцы, имеющие ряд принципиальных отличий от зарубежных приборов аналогичного назначения.

В 1956-1957 годах разрабатываются и утверждаются "Правила контроля сварных соединений при изготовлении пролетных строений железнодорожных мостов", в которых предусматривается применение метода ультразвуковой дефектоскопии для окончательной оценки качества стыковых и тавровых соединений. Таким образом, мостостроение явилось первой отраслью, применившей ультразвуковую дефектоскопию для окончательной оценки качества сварных швов. С этого времени ультразвуковой метод — основной метод контроля сварных соединений при изготовлении пролетных строений на всех мостовых заводах и их сборке при монтаже мостов.

Разработанные в Институте методика и аппаратура ультразвукового контроля качества сварных швов были использованы также при строительстве мостов через реку Красную во Вьетнаме, каньон р. Раздан в Армении, р. Амур в Хабаровске и многих других.

Все годы своего существования Институт вел активную деятельность в области создания, совершенствования и внедрения в широкую практику методов и средств ультразвукового неразрушающего контроля ответственных объектов железнодорожного транспорта. В результате работ НИИ мостов в 1961 году МПС была утверждена первая в мировой практике методика и инструкция по ультразвуковому контролю стыков контактной сварки рельсов на рельсосварочных предприятиях.

К 1965 году ультразвуковой контроль стал неотъемлемой частью технологического процесса сварки рельсов при их восстановлении, а с 1968 года и в пути. Ежегодно на рельсосварочных предприятиях контролируется более 600 тысяч, а в пути — более 2 миллионов сварных стыков рельсов. Параллельно с разработкой методологии контроля в НИИ мостов создаются принципы построения специализированных дефектоскопов (типа УЗД-НИИМ-5) для контроля сварных соединений. Синтезированная в то время функциональная схема дефектоскопа стала классической: на ее основе разработаны и выпущены промышленностью дефектоскопы УЗД-59ИМ, УЗД-60ИМ, ДУК-11ИМ, ДУК-13ИМ, РЕЛЬС-6 общим числом более 5 тысяч шт., имевшие принципиальные преимущества по сравнению с другими современными им аппаратами. Предложенные НИИ мостов принципы и теория ультразвуковой дефектоскопии позволили создать первый рельсовый дефектоскоп многоцелевого назначения УЗД-НИИМ-6М, который не имел аналогов за рубежом (выпущено более 2,5 тыс. приборов).

В 70-ые годы были выполнены разработки и освоено производство новых приборов агрегатированного комплекса типа РЕЛЬС-4, РЕЛЬС-5 и РЕЛЬС-6, а в 80-ые и 90-ые годы — съемных рельсовых дефектоскопов ПОИСК-2, ПОИСК-10Э, ПОИСК-10ЭМ. В 1990-ые годы важное место в работах НИИ мостов заняло развитие и совершенствование систем неразрушающего контроля деталей и узлов подвижного состава. Институтом выполнены исследования методов, разработка средств и технологий и широкое внедрение ультразвукового контроля элементов колесных пар и сварных соединений конструкций вагонов. По результатам совместных разработок НИКИМТ, фирмами РДМ и ЗОНД освоено серийное производство дефектоскопов УДС1-22 (1992 г.), УДС2-32 (1999 г.), УДС2-52 (2004 г.), устройств сканирования УСК-З/4 (1995 г.) и регистраторов результатов контроля УР-1/2/3Р (1998/99/2002 г.).

НИИ мостов разработаны основные отраслевые нормативные документы, регламентирующие организацию применения и технологии неразрушающего контроля в вагонном и пассажирском хозяйствах железнодорожного транспорта. К значительным научным результатам в области ультразвуковой дефектоскопии, полученным в НИИ мостов, относятся также разработка теории автоматизированного ультразвукового контроля сварных соединений, создание автоматизированных компьютерных систем обработки данных скоростного контроля рельсов (САРОС). Серийное производство средств и переход к массовому внедрению ультразвуковой дефектоскопии обусловили разработку Институтом научно-обоснованных принципов измерения и эталонирования основных параметров контроля, определяющих достоверность его результатов, а также создания средств метрологического обеспечения ультразвукового контроля (комплекты КОУ-1, КОУ-2).

Разработанное НИИ мостов в 1965 г. совместно с другими организациями "Положение о применении ультразвуковой дефектоскопии для контроля качества сварных соединений" было утверждено как общесоюзное и явилось основой созданных Институтом позднее семи государственных стандартов.
Полный список нормативных документов находится на странице "Стандартизация и метрология".

Серьезное внимание уделяется в Институте внедрению выполненных разработок в области неразрушающего контроля. В этом направлении ведутся работы по обеспечению достоверности и качества неразрушающего контроля путем создания, а также методического и организационного обеспечения функционирования отраслевых систем аккредитации лабораторий неразрушающего контроля и сертификации персонала по неразрушающему контролю объектов железнодорожного транспорта. По приказу МПС России в 1998 году при Институте создан филиал "Отраслевой учебно-методический и аттестационный центр по неразрушающему контролю и диагностике технических объектов" (Филиал НК-Центр), который аккредитован Госстандартом в качестве Органа по аккредитации лабораторий неразрушающего контроля предприятий железнодорожного транспорта и Уполномоченного органа по сертификации персонала по неразрушающему контролю НИИ мостов развивал и поддерживает тесные контакты с заказчиками и потребителями научно-технической продукции: ОАО "Российские железные дороги", исследовательскими и проектными организациями.

Читайте также:  Изготовление деталей из нержавеющей стали

Non-destructive testing. Welded joints. Ultrasonic methods

Дата введения 2015-07-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным предприятием "Научно-исследовательский институт мостов и дефектоскопии Федерального агентства железнодорожного транспорта" (НИИ мостов), Государственным научным центром РФ "Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ"), Федеральным государственным автономным учреждением "Научно-учебный центр "Сварка и контроль" при Московском государственном техническом университете им.Н.Э.Баумана"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 371 "Неразрушающий контроль"

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Апрель 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации" . Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок — в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает методы ультразвукового контроля стыковых, угловых, нахлесточных и тавровых соединений с полным проваром корня шва, выполненных дуговой, электрошлаковой, газовой, газопрессовой, электронно-лучевой, лазерной и стыковой сваркой оплавлением или их комбинациями, в сварных изделиях из металлов и сплавов для выявления следующих несплошностей: трещин, непроваров, пор, неметаллических и металлических включений.

Настоящий стандарт не регламентирует методы определения реальных размеров, типа и формы выявленных несплошностей (дефектов) и не распространяется на контроль антикоррозионных наплавок.

Необходимость проведения и объем ультразвукового контроля, типы и размеры несплошностей (дефектов), подлежащих обнаружению, устанавливаются в стандартах или конструкторской документации на продукцию.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.001 Система стандартов безопасности труда. Ультразвук. Общие требования безопасности

ГОСТ 12.1.003 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.2.003 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 12.3.002 Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности

ГОСТ 2789 Шероховатость поверхности. Параметры и характеристики

ГОСТ 18353* Контроль неразрушающий. Классификация видов и методов
________________
* Утратил силу. Действует ГОСТ Р 56542-2015.

ГОСТ 18576-96 Контроль неразрушающий. Рельсы железнодорожные. Методы ультразвуковые

ГОСТ Р 55725 Контроль неразрушающий. Преобразователи ультразвуковые пьезоэлектрические. Общие технические требования

ГОСТ Р 55808 Контроль неразрушающий. Преобразователи ультразвуковые. Методы испытаний

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 А-развертка: Форма представления ультразвукового сигнала на экране ультразвукового прибора, при котором ось абсцисс представляет время, а ось ординат — амплитуду.

[ГОСТ Р ИСО 5577-2009, пункт 2.13.1]

3.1.2 акустическая ось: Линия, соединяющая точки максимальной интенсивности акустического поля в дальней зоне преобразователя и ее продолжения в ближней зоне.

[ГОСТ 23829-85, статья 57]

3.1.3 АРД-диаграмма: Графическое изображение зависимости амплитуды отраженного сигнала от глубины залегания плоскодонного искусственного отражателя с учетом его размера и типа преобразователя.

[ГОСТ 23829-85, статья 69]

3.1.4 боковое цилиндрическое отверстие: Цилиндрический отражатель, расположенный параллельно поверхности ввода.

[ГОСТ Р ИСО 5577-2009, пункт 2.7.5]

3.1.5 дефект: Каждое отдельное несоответствие продукции установленным требованиям.

[ГОСТ 15467-79, статья 38]

3.1.6 иммерсионный способ: Акустический контакт через слой жидкости, толщиной больше пространственной длительности акустического импульса для импульсного излучения или нескольких длин волн для непрерывного излучения.

[ГОСТ 23829-85, статья 75]

3.1.7 контактный способ: Акустический контакт через слой вещества толщиной менее половины длины волны.

[ГОСТ 23829-85, статья 73]

3.1.8 контролепригодность: Свойство объекта, характеризующее его пригодность к проведению диагностирования (контроля) заданными средствами диагностирования (контроля).

[ГОСТ 20911-89, статья 14]

3.1.9 мера (калибровочный образец): Образец из материала определенного состава с заданными чистотой обработки поверхности, режимом термообработки, геометрической формой и размерами, предназначенный для калибровки (поверки) и определения параметров ультразвукового прибора неразрушающего контроля.

[ГОСТ Р ИСО 5577-2009, пункт 2.7.1]

3.1.10 мертвая зона: Область, прилегающая к поверхности ввода, в пределах которой не регистрируются эхо-сигналы от несплошностей.

[ГОСТ Р ИСО 5577-2009, пункт 2.6.2]

3.1.11 настроечный образец: Образец, изготовленный из материала, аналогичного материалу объекта контроля, содержащий определенные отражатели; используется для настройки амплитудной и (или) временной шкалы ультразвукового прибора.

[ГОСТ Р ИСО 5577-2009, пункт 2.7.3]

Читайте также:  Ключ 6 букв сканворд

3.1.12 несплошность: Нарушение однородности материала.

[ГОСТ Р ИСО 5577, пункт 2.1.12]

3.1.13 плоскодонный отражатель: Плоский отражатель, имеющий форму диска.

[ГОСТ Р ИСО 5577-2009, пункт 2.7.2]

3.1.14 преобразователь: Электроакустическое устройство, имеющее в своем составе один или более активных элементов и предназначенное для излучения и (или) приема ультразвуковых волн.

[ГОСТ Р ИСО 5577-2009, пункт 2.5.21]

3.1.15 стрела преобразователя: Расстояние от точки выхода луча наклонного преобразователя до его передней грани.

[ГОСТ 23829-85, статья 59]

3.1.16 точка выхода луча: Точка пересечения акустической оси преобразователя с его рабочей поверхностью.

[ГОСТ 23829-85, статья 58]

3.1.17 щелевой способ: Акустический контакт через слой жидкости, толщиной порядка длины волны.

[ГОСТ 23829-85, статья 74]

3.1.18 электромагнитоакустический преобразователь; ЭМА-преобразователь: Преобразователь, принцип действия которого основан на явлении магнитной индукции (эффекте Лоренца) или магнитострикции материала объекта контроля, при котором электрические колебания преобразуются в звуковую энергию или наоборот.

[ГОСТ Р ИСО 5577-2009, пункт 2.5.9]

3.1.19 SKH-диаграмма: Графическое изображение зависимости коэффициента выявляемости от глубины залегания плоскодонного искусственного отражателя с учетом его размера и типа преобразователя.

3.1.20 браковочный уровень чувствительности: Уровень чувствительности, при котором принимается решение об отнесении выявленной несплошности к классу "дефект".

3.1.21 дифракционный способ: Способ ультразвукового контроля методом отражений, использующий раздельные излучающий и приемный преобразователи и основанный на приеме и анализе амплитудных и/или временных характеристик сигналов волн, дифрагированных на несплошности.

3.1.22 контрольный уровень чувствительности (уровень фиксации): Уровень чувствительности, при котором производят регистрацию несплошностей и оценку их допустимости по условным размерам и количеству.

3.1.23 опорный сигнал: Сигнал от искусственного или естественного отражателя в образце из материала с заданными свойствами или сигнал, прошедший контролируемое изделие, который используют при определении и настройке опорного уровня чувствительности и/или измеряемых характеристик несплошности.

3.1.24 опорный уровень чувствительности: Уровень чувствительности, при котором опорный сигнал имеет заданную высоту на экране дефектоскопа.

3.1.25 погрешность глубиномера: Погрешность измерения известного расстояния до отражателя.

3.1.26 поисковый уровень чувствительности: Уровень чувствительности, устанавливаемый при поиске несплошностей.

3.1.28 угол ввода: Угол между нормалью к поверхности, на которой установлен преобразователь, и линией, соединяющей центр цилиндрического отражателя с точкой выхода луча при установке преобразователя в положение, при котором амплитуда эхо-сигнала от отражателя наибольшая.

3.1.29 условный размер (протяженность, ширина, высота) дефекта: Размер в миллиметрах, соответствующий зоне между крайними положениями преобразователя, в пределах которой фиксируют сигнал от несплошности при заданном уровне чувствительности.

3.1.30 условное расстояние между несплошностями: Минимальное расстояние между положениями преобразователя, при которых амплитуды эхо-сигналов от несплошностей фиксируются при заданном уровне чувствительности.

3.1.31 условная чувствительность контроля эхо-методом: Чувствительность, которую определяют по мере СО-2 (или СО-3Р) и выражают разностью в децибелах между показанием аттенюатора (калиброванного усилителя) при данной настройке дефектоскопа и показанием, соответствующим максимальному ослаблению (усилению), при котором цилиндрическое отверстие диаметром 6 мм на глубине 44 мм фиксируется индикаторами дефектоскопа.

3.1.32 шаг сканирования: Расстояние между соседними траекториями перемещения точки выхода луча преобразователя на поверхности контролируемого объекта.

3.1.33 эквивалентная площадь несплошности: Площадь плоскодонного искусственного отражателя, ориентированного перпендикулярно акустической оси преобразователя и расположенного на том же расстоянии от поверхности ввода, что и несплошность, при которой значения сигнала акустического прибора от несплошности и отражателя равны.

3.1.34 эквивалентная чувствительность: Чувствительность, выражаемая разностью в децибелах между значением усиления при данной настройке дефектоскопа и значением усиления, при котором амплитуда эхо-сигнала от эталонного отражателя достигает заданного значения по оси ординат развертки типа A.

4 Обозначения и сокращения

4.1 В настоящем стандарте применены следующие обозначения:

— условная высота дефекта;

— условная протяженность дефекта;

— условное расстояние между дефектами;

— условная ширина дефекта;

— шаг поперечного сканирования;

— шаг продольного сканирования.

4.2 В настоящем стандарте применены следующие сокращения:

БЦО — боковое цилиндрическое отверстие;

НО — настроечный образец;

ПЭП — пьезоэлектрический преобразователь;

УЗ — ультразвук (ультразвуковой);

УЗК — ультразвуковой контроль;

ЭМАП — электромагнитоакустический преобразователь.

5 Общие положения

5.1 При УЗК сварных соединений применяют методы отраженного излучения и прошедшего излучения по ГОСТ 18353, а также их сочетания, реализуемые способами (вариантами методов), схемами прозвучивания, регламентированными настоящим стандартом.

5.2 При УЗК сварных соединений используют следующие типы УЗ волн: продольные, поперечные, поверхностные, продольные подповерхностные (головные).

5.3 Для УЗК сварных соединений используют следующие средства контроля:

— УЗ импульсный дефектоскоп или аппаратно-программный комплекс (далее — дефектоскоп);

— преобразователи (ПЭП, ЭМАП) по ГОСТ Р 55725 или нестандартизированные преобразователи (в том числе — многоэлементные), аттестованные (калиброванные) с учетом требований ГОСТ Р 55725;

— меры и/или НО для настройки и проверки параметров дефектоскопа.

Дополнительно могут быть использованы вспомогательные приспособления и устройства для соблюдения параметров сканирования, измерения характеристик выявленных дефектов, оценки шероховатости и др.

5.4 Дефектоскопы с преобразователями, меры, НО, вспомогательные приспособления и устройства, используемые для УЗК сварных соединений, должны обеспечивать возможность реализации методов и способов УЗК из числа содержащихся в настоящем стандарте.

5.5 Средства измерений (дефектоскопы с преобразователями, меры и др.), используемые для УЗК сварных соединений, подлежат метрологическому обеспечению (контролю) в соответствии с действующим законодательством.

5.6 Технологическая документация на УЗК сварных соединений должна регламентировать: типы контролируемых сварных соединений и требования к их контролепригодности; требования к квалификации персонала, выполняющего УЗК и оценку качества; необходимость УЗК околошовной зоны, ее размеры, методику контроля и требования к качеству; зоны контроля, типы и характеристики дефектов, подлежащих выявлению; методы контроля, типы применяемых средств и вспомогательного оборудования для контроля; значения основных параметров контроля и методики их настройки; последовательность проведения операций; способы интерпретации и регистрации результатов; критерии оценки качества объектов по результатам УЗК.

6 Способы контроля, схемы прозвучивания и способы сканирования сварных соединений

6.1 Способы контроля

При УЗК сварных соединений применяют следующие способы (варианты методов) контроля: эхо-импульсный, зеркально-теневой, эхо-теневой, эхо-зеркальный, дифракционный, дельта (рисунки 1-6).

Допускается применение других способов УЗК сварных соединений, достоверность которых подтверждена теоретически и экспериментально

Способы УЗК реализуют с помощью преобразователей, включенных по совмещенной или раздельной схемам.