Удельная проводимость алюминия м ом мм2

Для электрических сетей применяют неизолированные алюминиевые, сталеалюминиевые, медные и стальные провода, а для внутренних проводок — изолированные алюминиевые и медные провода.

Медь — хороший проводниковый материал (удельная проводимость γ = 53 м/Ом • мм2), устойчивый против коррозии, но дорогой и дефицитный. Поэтому для линий неизолированные медные провода применяют весьма редко.

Алюминий как проводниковый материал хуже меди ( γ = 32. 34 м/Ом • мм2). На открытом воздухе хорошо противостоит коррозии. Алюминиевые провода всегда выполняют многопроволочными, так как однопроволочные не обеспечивают достаточной механической прочности.

В настоящее время заводами кабельной промышленности освоен массовый выпуск неизолированного провода марки АН35, изготавливаемого из алюминиевого сплава АВ-Е. Он рекомендуется к применению вместо провода А35 при проектировании линий 6. 10 кВ в I. IV районах по ветру и I и II районах по гололеду.

Сталь (железо) обладает удельной проводимостью, в 7,5 раза меньшей, чем медь, и в 4,5 раза меньшей, чем алюминий: у = 7 м/Ом•мм2. Сталь находит применение в сетях с малой плотностью нагрузки. Для защиты от быстрого разрушения стальные провода изготавливают оцинкованными (гальваническое покрытие тонким слоем цинка).

В сталеалюминиевых проводах сердечник набран из оцин- кованных стальных проволок, увеличивающих общую механическую прочность, вокруг которых навиты алюминиевые провода. В биметаллических проводах стальная проволока покрыта слоем алюминия или меди (прокатыванием).

Провода обозначают следующими буквами: М — медные, А — алюминиевые, ПС — стальные многопроволочные, ПСО — стальные, однопроволочные, АС — сталеалюминиевые, АКП — провод марки А, в котором межпроволочное пространство, за исключением наружной поверхности, заполнено нейтральной смазкой повышенной термостойкости; АСКС — провод марки АС, в котором межпроволочное пространство стального сердечника заполнено термостойкой смазкой. Эти провода предназначены для установки в районах с агрессивной атмосферой (побережье морей и соленых озер, солончаковых песков и т. п.).

Цифры после букв М, А, ПС, АС — это сечение провода (мм2). В однопроволочных стальных проводах цифра указывает диаметр провода (мм).

Изолированные провода изготавливают из мягкой меди и алюминия. В качестве изоляции используют покрытие из хлопчатобумажной пряжи, пропитанной вулканизированной резиной, поливинилхлоридного пластика и других пластических материалов.

Шнур представляет собой провод, состоящий из двух или более изолированных гибких жил, заключенных в общую оболочку (оплетку или шланг).

Кабель — это одна или несколько скрученных изолированных жил, заключенных в защитную герметическую металлическую (алюминиевую или свинцовую), резиновую или поливинилхлоридную оболочку.

Кабели подразделяют на силовые и контрольные. Силовые кабели, Используемые в силовых установках различных напряжений, изготавливают с изоляцией из пропитанной бумаги (в обозначении марки ка- беля не указывается) или с резиновой изоляцией (буква Р) с медными Шли алюминиевыми (А) жилами. Силовые кабели различают по числу К сечению жил, конструкции, типам защитных покровов и номинальному напряжению. Кабели в свинцовой оболочке в обозначении имеют букву С, в алюминиевой — А, в поливинилхлоридной — В, в негорючей маслостойкой найритовой — Н. Оболочка может быть голая (Г) или бронированная (Б) стальными лентами или проволоками.

Читайте также:  Бетонные трубы для канализации

Одножильные силовые кабели изготавливают с сечением жилы от 2,5 до 800, двухжильные — от 2,5 до 150, трехжильные — от 2,5 до 250, четырехжильные — от 4 до 185 мм2.

Контрольные кабели (в обозначении первая или вторая буква К) предназначаются для работы в электрических сетях до 500 В переменного или 1000 В постоянного тока. Их различают по числу (до нескольких десятков) и сечению (не более 10 мм2) токопроводящих жил, конструкции и типам защитных покровов (как и силовые кабели). В таблице 15.3 приведены общие технические характеристики проводов и некоторых кабелей и даны рекомендации по их применению.

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор. Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям. Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Удельная проводимость алюминия м ом мм2

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов. Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Удельное сопротивление чистых металлов при низких температурах

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры. Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления. Разумеется, подобный режим после разрушения не является рабочим.

Удельная проводимость алюминия м ом мм2

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Основные электрические параметры проводников, созданных из разных материалов

МатериалУдельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь1,68х10^-35,96х10^7
Серебро1,59х10^-36,3х10^7
Золото2,44х10^-34,1х10^7
Алюминий2,82х10^-33,5х10^7
Вольфрам5,6х10^-31,79х10^7
Железо1х10^-71х10^7
Платина1,06х10^-79,43х10^6
Литий9,28х10^-81,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Читайте также:  Сверло под конфирмат леруа

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

МатериалУдельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C)Поправочный температурный коэффициент (ПК)
Медь0,01760,004
Алюминий0,02780,0045
Сталь0,130,0063
Никелин0,43-0,450,0072
Латунь0,040,002
Нихром0,980,0003
Вольфрам0,06120,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Удельная проводимость алюминия м ом мм2

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений. Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем. Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов. Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов. Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Читайте также:  Как узнать какой конденсатор

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Видео

Удельная проводимость алюминия м ом мм2

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

Советую почитать данный документ, т.к. там много чего полезного.

В этом документе приводится формула для расчета потери напряжения и указано:

Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.

Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.

R1=R0 [1+α (Т1-Т0)]

R0 – сопротивление при 20 градусах Цельсия;

R1 — сопротивление при Т1 градусах Цельсия;

Т0 — 20 градусов Цельсия;

α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);

Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм 2 /м, а для алюминия – 0,028 Ом · мм 2 /м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.

Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?