Транзистор в режиме усиления

Кроме этих режимов существует ещё инверсный режим, который используется очень редко.

Когда напряжение между базой и эмиттером ниже, чем 0.6V — 0.7V, то p-n переход между базой и эмиттером закрыт. В таком состоянии у транзистора практически отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор заперт, и говорят, что он находится в режиме отсечки.

В активном режиме на базу подано напряжение, достаточное для того чтобы p-n переход между базой и эмиттером открылся. Возникают токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Если увеличивать ток базы, то может наступить такой момент, когда ток коллектора перестанет увеличиваться, т.к. транзистор полностью откроется, и ток будет определяться только напряжением источника питания и сопротивлением нагрузки в цепи коллектора. Транзистор достигает режима насыщения. В режиме насыщения ток коллектора будет максимальным, который может обеспечиваться источником питания при данном сопротивлении нагрузки, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы. В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен». Все эти режимы можно разъяснить с помощью выходных характеристик транзистора.

Рассмотрим каскад усиления на транзисторе, включенном по схеме с общим эмиттером (рис. 4.14). При изменении величины входного сигнала будет изменяться ток базы Iб . Ток коллектора Iк изменяется пропорционально току базы:

Транзистор в режиме усиления

Рис. 4.14. Схема усилительного каскада (рисунок выполнен авторами)

Изменение тока коллектора можно проследить по выходным характеристикам транзистора (рис. 4.15). На оси абсцисс отложим отрезок, равный ЕК — напряжению источника питания коллекторной цепи, а на оси ординат отложим отрезок, соответствующий максимально возможному току в цепи этого источника:

Между этими точками проведем прямую линию, которая называется линией нагрузки и описывается уравнением:

Где UКЭ — напряжение между коллектором и эмиттером транзистора; RК — сопротивление нагрузки в коллекторной цепи.

Транзистор в режиме усиления

Рис. 4.15. Режимы работы биполярного транзистора (рисунок выполнен авторами)

Из (4.5.3) следует, что

И, следовательно, наклон линии нагрузки определяется сопротивлением RК. Из рис. 4.15 следует, что в зависимости от тока базы Iб, протекающего во входной цепи транзистора, рабочая точка транзистора, определяющая его коллекторный ток и напряжение UКЭ, будет перемещаться вдоль линии нагрузки от самого нижнего положения (точки 1, определяемой пересечением линии нагрузки с выходной характеристикой при Iб=0), до точки 2, определяемой пересечением линии нагрузки с начальным крутовозрастающим участком выходных характеристик.

Читайте также:  Газонокосилка своими руками из стиральной машины

Зона, расположенная между осью абсцисс и начальной выходной характеристикой, соответствующей Iб=0, называется зоной отсечки и характеризуется тем, что оба перехода транзистора — эмиттерный и коллекторный смещены в обратном направлении. Коллекторный ток при этом представляет собой обратный ток коллекторного перехода — IК0, который очень мал и поэтому почти все напряжение источника питания EК падает между эмиттером и коллектором закрытого транзистора:

А падение напряжения на нагрузке очень мало и равно:

Говорят, что в этом случае транзистор работает в режиме отсечки. Поскольку в этом режиме ток, протекающий по нагрузке исчезающе мал, а почти все напряжение источника питания приложено к закрытому транзистору, то в этом режиме транзистор можно представить в виде разомкнутого ключа.

Если теперь увеличивать базовый ток Iб, то рабочая точка будет перемещаться вдоль линии нагрузки, пока не достигнет точки 2. Базовый ток, соответствующий характеристике, проходящей через точку 2, называется током базы насыщения Iб нас. Здесь транзистор входит в режим насыщения и дальнейшее увеличение базового тока не приведет к увеличению коллекторного тока IК. Зона между осью ординат и круто изменяющимся участком выходных характеристик называется зоной насыщения. В этом случае оба перехода транзистора смещены в прямом направлении; ток коллектора достигает максимального значения и почти равен максимальному току источника коллекторного питания:

а напряжение между коллектором и эмиттером открытого транзистора оказывается очень маленьким. Поэтому в режиме насыщения транзистор можно представить в виде замкнутого ключа.

Промежуточное положение рабочей точки между зоной отсечки и зоной насыщения определяет работу транзистора в режиме усиления, а область, где она находится, называется активной областью. При работе в этой области эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном (Петрович В. П., 2008).

Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.

Читайте также:  Циатим 201 характеристики и применение гост

Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β, то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h21э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

Коэффициент h21э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h21э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.

Транзистор в режиме усиления

Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, — защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

Читайте также:  Перечислите основные технологические свойства металлов и сплавов

Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h21э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во – первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Во-вторых, от температуры окружающей среды, — с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи – ООС.

На рисунке 6 показана схема с фиксированным напряжением смещения.

Транзистор в режиме усиления

Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.

доцент п / п Г.Подлеский

Занятие 3. Транзистор в режиме усиления

Учебные, методические и воспитательные цели:

1. Изучить нагрузочные характеристики, режим неискаженного усиления и схемы питания транзистора.

2. Прививать методические навыки анализа электрических схем.

3. Развивать инженерное мышление, интерес к дисциплине.