Термообработка стали хвг закалка отпуск

Изобретение относится к области металлургии и может быть применено при термической обработке деталей, от которых требуется высокая точность размеров, высокие механические свойства, надежность и долговечность. Технический результат от изобретения – снижение деформации более чем в два раза, повышение ударной вязкости и уменьшение ее анизотропии по сравнению с известными способами термической обработки. Технический результат достигается тем, что во время закалки используют различную методику охлаждения в различных интервалах температур, особенно в интервале температур мартенситных превращений, и новую методику отпуска. При новой методике охлаждения и отпуска обеспечивается минимальная деформация и меньшая анизотропия ударной вязкости стали ХВГ, что повышает надежность и долговечность изделий, а также ускоряет процесс производства. Изобретение может быть использовано в точном приборостроении и машиностроении. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии и может быть использовано при термической обработке деталей из стали ХВГ, от которых требуется высокая точность размеров и высокие механические свойства, особенно для пресс-форм с твердостью НRСэ 4953, используемых в точном приборостроении.

Известен способ закалки деталей из стали ХВГ, заключающийся в нагреве до температуры 820-850 o С, выдержке и охлаждении в масле с температурой 20-50 o С, промывке в горячем растворе Na2CO3 в воде. После чего производят отпуск на заданную твердость НRСэ 49-53 [1]. При этом способе закалки основные структурные превращения аустенита в мартенсит происходят при пониженных температурах. Вследствие снижения температуры уменьшается объем стали, а превращение аустенита в мартенсит увеличивает объем стали. Кроме того, охлаждение до низких температур 20-50 o С вызывает снижение пластичности стали. Эти причины увеличивают деформацию и изменяют объем стали, что приводит иногда к трещинам непосредственно при закалке или с течением времени при эксплуатации.

Наиболее близким к предлагаемому является способ изотермической закалки деталей сложной формы из стали ХВГ, который заключается в нагреве до 830-850 o С, выдержке и охлаждении до 160-180 o С, выдержке с последующим охлаждением до цеховой температуры. После чего детали промывают от масла в 3-5% растворе, Na2CO3 в воде при 80-100 o С и производят отпуск на заданную твердость [2].

При термической обработке по этому способу образуется меньшая разность температур за счет охлаждения до повышенной температуры (160-180 o С) и образуется

15-30% мартенситета. Это также не вызывает больших внутренних напряжений. Но последующее охлаждение до цеховой температуры уменьшает объем стали и вызывает превращение остаточного аустенита в мартенсит, что вызывает значительные внутренние напряжения, которые приводят к недопустимой деформации тонкостенных деталей сложной конфигурации. Поэтому детали сложной конфигурации не рекомендуется подвергать такому режиму термической обработки.

Технический результат, достигаемый при использовании предлагаемого способа, заключается в снижении деформации, повышении ударной вязкости и уменьшении ее анизотропии при заданной твердости по сравнению с известными способами термической обработки.

Для получения указанного технического результата в предлагаемом способе термической обработки деталей из стали ХВГ, включающем нагрев под закалку до 830-850 o C, охлаждение в масле и отпуск, охлаждение деталей производят сначала в масле с температурой 90-110 o С, а затем в 3-5% водном растворе Na2CO3 с температурой 90-100 o С, выдерживают 1-60 минут и осуществляют нагрев для отпуска при 470-500 o C.

Выдержку в 3-5% растворе Na2CO3 в воде совмещают с промывкой деталей от масла.

Отличительные признаки предлагаемого способа заключаются в том, что при выдержке в интервале температур 90-100 o C в течение 1-60 минут во время охлаждения при закалке образуется около 50% мартенсита. При последующем нагреве до 470-500 o С происходит отпуск образованного мартенсита и превращение его в троостит. В это же время из остаточного аустенита выделяются легирующие элементы и происходит его превращение в троостит.

Троостит имеет меньший удельный объем, чем мартенсит.

Поэтому предлагаемый способ термической обработки изменяет объем стали ХВГ меньше, чем известные способы, что не вызывает значительного повышения внутренних напряжений, а это способствует повышению ударной вязкости, особенно в направлении поперек проката.

Пример практического применения Изготавливали пальчиковые образцы для определения величины изменения размеров и ударной вязкости. Образцы имели размеры 10х10х55 с радиусом закругления R5 мм у одного конца.

Изменение внутренних напряжений и упругую деформацию определяли с помощью колец переменного сечения.

Кольца переменного сечения имели размеры: наружный диаметр 16 мм, внутренний диаметр 8 мм, эксцентриситет 3,5 мм, ширину 8 мм. Кольца размечали отпечатками от алмаза прибора Викерс нагрузкой 30 кгс.

Читайте также:  Как проверить смд светодиод мультиметром

Разметку производили широкой части кольца относительно оси симметрии на расстоянии 3 мм. Каждое кольцо размечали двумя отпечатками. Отпечатки разделяли осью симметрии. Отпечатки ставили после отпуска и шлифования плоской поверхности колец.

Все образцы после термической обработки шлифовали и подвергали испытаниям.

Результаты испытаний приведены в таблице.

Из результатов таблицы следует, что наиболее оптимальные свойства обеспечивает предлагаемый режим термической обработки.

Технический результат от предлагаемого способа обеспечивается за счет уменьшения деформации (в 2 раза меньшей, чем при способах [1] и [2]). Это позволяет сократить количество брака в 2 раза, а также за счет повышения надежности и долговечности деталей вследствие уменьшения анизотропии свойств на 28-32% по сравнению со способом [1] и способом [2].

Предлагаемый способ сокращает процесс термической обработки на 1-2 часа.

Источники информации 1. Каменичный И.С. Краткий справочник термиста. Машгиз. Москва, 1959 г., Киев, с. 143.

2. Геллер Ю.А. Инструментальные стали. М.: Металлургия, 1983 г., с. 261.

3. Попов А.А., Попова А.Е. Справочник термиста. Изотермические термокинетические диаграммы распада переохлажденного аустенита. Машгиз. М. 1961 г., Свердловск, с. 373.

1. Способ термической обработки деталей из стали ХВГ, включающий нагрев до 830-850 o С, охлаждение в масле и отпуск, отличающийся тем, что охлаждение деталей производят сначала в масле с температурой 90-110 o С, а затем в 3-5%-ном водном растворе Na2CO3 c температурой 90-100 o С, выдерживают 1-60 мин и осуществляют нагрев для отпуска при 470-500 o С.

2. Способ по п. 1, отличающийся тем, что выдержку в 3-5%-ном растворе Na2CO3 в воде совмещают с промывкой деталей от масла.

Марка: ХВГ (заменители: 9ХС, ХГ, 9ХВГ, ХВСГ, ШХ15СГ).
Класс: Сталь инструментальная легированная
Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 5950-2000 , ГОСТ 2590-2006 , ГОСТ 2591-2006. Калиброванный пруток ГОСТ 5950-2000 , ГОСТ 7417-75 , ГОСТ 8559-75, ГОСТ 8560-78. Шлифованный пруток и серебрянка ГОСТ 5950-2000 , ГОСТ 14955-77. Полоса ГОСТ 4405-75 . Поковки и кованные заготовки ГОСТ 5950-2000 , ГОСТ 1133-71, ГОСТ 7831-78.
Использование в промышленности: измерительный и режущий инструмент, для которого повышенное коробление при закалке недопустимо, резьбовые калибры, протяжки, длинные метчики, длинные развертки и другой вид специального инструмента, холодновысадочные матрицы и пуансоны, технологическая оснастка.
Химический состав в % стали ХВГ
C 0,9 – 1,05
Si 0,1 – 0,4
Mn 0,8 – 1,1
Ni до 0,35
S до 0,03
P до 0,03
Cr 0,9 – 1,2
Mo до 0,3
W 1,2 – 1,6
Cu до 0,3
Fe

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
ХВГ труба, лента, проволока, лист, круг ХВГ

Свойства и полезная информация:
Читайте также:  Маска сварщика профессиональная хамелеон nwt 3
Прокаливаемость стали ХВГ (ОСТ 23.4.127-77)
(твердость, HRC )
Расстояние от торца, мм
2,5 3 7,5 10 15 20 25 30 35 45
65-67 62,5-66,5 57-66 49,5-65,5 41,5-63 38,5-60 37,5-55,5 38-51,5 36-47,5 35-43,5
Термообработка Критическая твердость, HRCэ Критический диаметр в масле
Закалка 61 15-70
Шлифуемость при твердости HRCэ 59-61 пониженная, при HRCэ 55-57 удовлетворительная.
Теплостойкость стали ХВГ
Температура, °С
Время, ч
HRC
150-170
200-220
1
1
63
59
Физические свойства стали ХВГ
T (Град) E 10 – 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м 3 ) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 7850 380
100 11 7830
200 12
300 13 7760
400 13.5
500 14
600 14.5 7660

Расшифровка марки стали ХВГ: буквы Х, В и Г свидетельствуют о содержании соответственно хрома, вольфрама и марганца не более 1,5%. Кроме того написание данной марки имеет свои особенности – сталь отличается от 9ХВГ, повышенным содержанием в ней углерода, примерно 1%, поэтому цифра в начале марки не ставится.

Инструмент из стали ХВГ и его термообработка: лучшие результаты закалки свёрл из легированной и углеродистой сталей получаются при нагреве рабочей части в соляной или свинцовой ванне. При необходимости вести нагрев в камерной печи применяют огнеупорные подставки, так же как и для свёрл из быстрорежущей стали.

Охлаждение свёрл из легированной стали производят в селитровой или масляной ванне с температурой 150-180° и последующим остыванием на воздухе. При закалке в холодном масле свёрла вынимают горячими при температуре 150-180°. Свёрла диаметром до 10 мм охлаждают прокатыванием под утюгом. Отпуск свёрл, изготовленных из различных марок сталей, кроме стали 9ХС, производят в масляной ванне при температуре 150-180° в течение 1-2 час. Свёрла из стали 9ХС отпускают в масляной ванне или в электропечи при температуре 180-220° в течение 1,5-2 час.

Материалом для изготовления метчиков служат стали углеродистые У12А, У10А, легированные ШХ15, ШХ12, ХВГ, 9ХС, ХГ и быстрорежущая.

Метчики из углеродистых и легированных сталей нагревают под закалку в свинцовых ваннах для обеспечения быстроты нагрева. Температуру закалки принимают на нижнем пределе. Выдержку в свинце дают наименьшую.

Указанные меры принимаются для того, чтобы полностью закалился только поверхностный слой, а сердцевина не успела прогреться и оставалась вязкой. При таком состоянии уменьшается возможность деформации резьбы и увеличивается стойкость метчика в работе. С этой же целью метчики из легированной стали следует калить в соли или масле с температурой 150-200°.

Цилиндрические и дисковые фрезы изготовляют из быстрорежущей и легированных сталей 9ХС, X, ХВГ и др. Применения углеродистой стали для изготовления цилиндрических фрез следует избегать, ввиду их малой стойкости.

Модульные дисковые фрезы, изготовленные из углеродистой стали толщиной до 3-4 мм, следует охлаждать в масле, а толщиной 4 мм и более – в воде с переносом в масло. Отпуск производить в масляной ванне при температуре 150-180 0 в течение 1-2 час. Требуемая твёрдость Rc = 60-63.

Фрезы концевые из быстрорежущей стали нагревают для закалки с подогревом. После окончательного нагрева фрезы охлаждают в расплавленной селитре при температуре 450 – 500° или в масле при температуре 150-200°, а затем на воздухе. Отпускают двукратно при температуре 540-580°. Твёрдость зуба проверяют тарированным напильником. Твёрдость должна быть в пределах Rc = 62-65.

Фрезы диаметром свыше 10 мм изготовляют сварными. Материал хвостовой части сталь 45. Хвостовики подвергаются термической обработке до твёрдости Rc = 30-45.

Фрезы концевые из легированной стали после нагрева охлаждают в расплавленной селитре или горячем масле при температуре 150-200°, а затем на воздухе. Отпускают в масляной ванне при температуре 150-180° в течение 1-2 час. Твёрдость Rc = 60-64.

Фрезы, изготовленные из легированной стали ХВГ, в случае нагрева в свинцовой или соляной ванне также надо подогревать. Охлаждение следует производить в соли или масле, подогретыми до температуры 150-180°, а затем на воздухе. Отпуск фрез из стали 9ХС производить в масляной ванне при температуре 170-200° в течение 1-2 час. Фрезы, изготов ленные из других марок сталей, следует отпускать в масляной ванне при температуре 150-180° в течение 1-2 час. Твёрдость после отпуска Rc – 60-63. Контроль сплошной.

Читайте также:  Прослушка жучок с сим картой
Краткие обозначения:
σв – временное сопротивление разрыву (предел прочности при растяжении), МПа ε – относительная осадка при появлении первой трещины, %
σ0,05 – предел упругости, МПа Jк – предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 – предел текучести условный, МПа σизг – предел прочности при изгибе, МПа
δ5,δ4,δ10 – относительное удлинение после разрыва, % σ-1 – предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж – предел текучести при сжатии, МПа J-1 – предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν – относительный сдвиг, % n – количество циклов нагружения
s в – предел кратковременной прочности, МПа R и ρ – удельное электросопротивление, Ом·м
ψ – относительное сужение, % E – модуль упругости нормальный, ГПа
KCU и KCV – ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T – температура, при которой получены свойства, Град
s T – предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ – коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB – твердость по Бринеллю C – удельная теплоемкость материала (диапазон 20 o – T ), [Дж/(кг·град)]
HV – твердость по Виккерсу pn и r – плотность кг/м 3
HRCэ – твердость по Роквеллу, шкала С а – коэффициент температурного (линейного) расширения (диапазон 20 o – T ), 1/°С
HRB – твердость по Роквеллу, шкала В σ t Т – предел длительной прочности, МПа
HSD – твердость по Шору G – модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь ХВГ ГОСТ 5950-2000

Массовая доля элемента, %

I группа – для изготовления инструмента, используемого в основном для обработки ме­таллов и других материалов в холодном состоянии;

По способу дальнейшей обработки горячекатаную и кованую металлопродукцию под­разделяют на подгруппы:

а – для горячей обработки давлением;

б – для холодной механической обработки (обточки, строжки фрезерования и т.д.)

По состоянию поверхности металлопродукцию подгруппы б подразделяют на:

О – обычного качества;

П – повышенного качества.

Температура критических точек, °С

Твердость стали после термообработки

Состояние поставки, режимы термообработки

Прутки и полосы отожженные или высокоотпущенные

Образцы. Закалка 850 °С, масло. Отпуск 180 °С

Изотермический отжиг 780 – 800 °С, охлаждение со скоростью

50 град/ч до 670 – 720 °С, выдержка 2 – 3 ч, охлаждение со

скоростью 50 град/ч до 550 °С, воздух

Подогрев 650 – 700 °С. Закалка 830 – 850 °С, масло. Отпуск

150 – 200 °С, воздух (режим окончательной термообработки)

Подогрев 650 – 700 °С. Закалка 830 – 850 °С. Отпуск

200 – 300 °С, воздух (режим окончательной термообработки)

Твердость и ударная вязкость в зависимости от сечения образца

Место вырезки образца

Закалка на мелкое зерно. Отпуск 150 – 160 °С

Твердость стали в зависимости от температуры отпуска

Температура отпуска, °С

Заготовки сечением до 50 – 60 мм. Закалка 840 °С,

масло или расплав солей с водой при 200 °С

Закалка 820 °С, масло

Закалка 830 – 850 °С, масло

Прокаливаемость (Твердость HRCЭ)

Расстояние от торца,

Критический диаметр в масле,

Кривая зависимости твердости по Роквеллу (HRC) от температуры отпуска:

Температура ковки, °С:

Свариваемость – не применяется для сварных конструкций.

Обрабатываемость резанием – в горячекатаном состоянии при HB 235 и σВ=760 МПа, Кυ тв. спл=0,75, Кυ б. ст=0,35,

Склонность к отпускной хрупкости – малосклонна.

Применение: для измерительных и режущих инструментов, для которых повышенное коробление при закалке недопустимо; резьбовых калибров, протяжек, длинных метчиков, длинных разверток, плашек и другого вида специального инструмента, холодновысадочных матриц и пуансонов, технологической оснастки.

кованая круглого и квадратного сечений – ГОСТ 1133-71;

горячекатаная круглого сечения – ГОСТ 2590-88;

горячекатаная квадратного сечения – ГОСТ 2591-88;

полосовая – ГОСТ 4405-75;

калиброванная – ГОСТ 7417-75; ГОСТ 8559-75 и ГОСТ 8560-78;

сталь со специальной отделкой поверхности – ГОСТ 14955-77.

“>