Технология литья пластмасс под давлением

Пластик уже давно и прочно вошел в нашу жизнь. Пластмассовая тара, игрушки, посуда, упаковка и даже трубы – все это очень широко используется в быту. Следовательно, и спрос на них довольно высок. Литье изделий из пластика – это одна из перспективных ниш российского бизнеса. При должной организации производства и сбыта на этом можно очень хорошо заработать.

С чего следует начинать?

Первое, что нужно сделать до организации производства – это выбрать какие именно группы товаров вы будете производить. Здесь многое зависит от ваших конкретных возможностей. Например, если есть возможность договориться о поставках тары для упаковки полуфабрикатов, начинать следует именно с нее. Это даст хороший старт производственному процессу. Позднее при необходимости можно будет расшириться и заняться производством других товарных групп.

Если же наработок никаких нет, то начинать следует с изделий массового потребления:

  • ведер;
  • цветочных горшков;
  • емкостей по рассаду;
  • упаковки.

Выбор соответствующего помещения

Литье пластмасс под давлением – жестких требований к условиям производства не предъявляет. Но, несмотря на это помещение должно быть расположено вдали от жилых районов, лучше всего, если оно будет находиться в промышленной зоне. При этом также должен быть соблюден ряд условий и требований пожарной безопасности. При этом под сам производственный цех потребуется отвести от 50 до 200 кв. м. Также порядка 80 кв. м уйдет под склад. Изделия из пластмассы хоть и легкие, но довольно объемные.

Подбор персонала

От того насколько хорошо будет проведен подбор персонала зависит успех предприятия. Всего для работы в небольшом производственном цеху может потребоваться от 6 до 10 человек. Самым главным из них будет, конечно же, технолог. Именно его подбору следует уделить самое пристальное внимание. На его зарплате экономить не стоит, оклад хорошего специалиста должен составлять не менее 30000 рублей.

Основные виды сырья для литья пластмасс

Для литья пластмасс под давлением используются полимеры в гранулах. Использование того или иного из них зависит от его физико-химических свойств. По показателям устойчивости к температурному воздействию все твердые полимеры делятся на следующие группы:

  1. Термопластичные. Под воздействием температуры обладают способностью легко переходить от твердого состояния к пластичному и обратно. Они очень легко поддаются вторпереработке.
  2. Термореактивные. Обладают высокими показателями прочности и термоустойчивости. В их основе лежат различные синтетические смолы. Для придания определенных свойств в их состав вводятся специальные добавки и наполнители.
  3. Пенопласты. Характеризуются отличной тепло- и звукоизоляцией. Изготавливаются из синтетических полимеров, роль наполнителя в них играет газообразная среда.

Купить пластмассу для литья можно в компаниях специализирующихся на продаже полимеров. Обычно у них можно приобрести сырье не только отечественного, но импортного производства. Средняя цена на полиэтилен высокого давления на данный момент составляет около 35 руб. за килограмм, полипропилен от 40 руб. и выше.

Основные технологии литья

Существует три основных технологии литья пластмасс:

  1. Экструзионная или литье под давлением. Одна из самых распространенных технологий. Из ее недостатков стоит отметить высокую стоимость литьевых машин, также для грамотной организации технологического процесса требуется наличие специального образования.
  2. Выдувная. Используется для изготовления полых изделий. Например, полиэтиленовых бутылок и другой тары. Суть этой технологии состоит в том, что полимер сначала нагревается до определенной температуры, а затем выдувается на охлажденную пресс-форму.
  3. Термоформовочная. Эта технология подразумевает использование сжатого воздуха или прессования. Чаще всего эти способом изготавливается одноразовая посуда и упаковка для продуктов.

Технология литья под давлением

Технология литья пластмасс под давлением включает в себя следующие производственные процессы:

  1. Засыпка сырья в вакуумный загрузчик. При этом используемое сырье может быть в виде гранул, порошков или таблеток.
  2. Подача сырья в бункер термопластавтомата.
  3. Нагрев. Нагретая поверхность шнека, находящегося в бункере расплавляет полимеры, а также при необходимости осуществляет их смешивание с наполнителями.
  4. Налитее пластика в пресс-форму. Под действием осевой силы расплавленные полимеры выдавливаются в форму.

К достоинствам этого вида литья можно отнести следующее:

  1. Высокое качество изделий.
  2. Высокие показатели производительности.
  3. Процесс литья может быть полностью автоматизированным.

Виды литья пластмасс

Изготовление пластмассовых изделий литьем под давлением может осуществляться несколькими способами:

  1. Инжекционным. Один из самых распространенных способов литья. Характеризуется он кратковременным впрыском расплавленного полимера. Во время него в рабочей камере литейной машины создается определенное давление, после чего осуществляется впрыскивание пластифицированного полимера.
  2. Инжекционно-прессовым. Этот метод используется при производстве изделий с большой поверхностью. Для него требуются специальные пресс-формы с подвижными составляющими.
  3. Инжекционно-газовым. Во время такого литья дополнительно используется сила сжатого газа, которая осуществляет дожатие пластика в пресс-форме.
  4. Интрузионным. Самый простой вариант литья. Используются для отлива самых простых товаров с минимальным количеством поверхностей.

Кроме вышеперечисленных способов существуют и более сложные виды литья:

  1. Сэндвич. Во время него используется два вида пластиков. Этот метод позволяет изготавливать товары с наружным покрытием.
  2. Соинжекционное. Используется для изготовления многослойных изделий. Для него на термопластавтомат потребуется установить сопло сложной конструкции. Этот метод делает возможным изготовление изделий со смешанными цветами.
  3. Литье в многокомпонентные формы. Этот метод позволяет изготавливать товары с четким цветовым разграничением. Из его особенностей следует отметить возможность выпуска изделий с соседними деталями разной плотности.
  4. Литье в поворотные формы. При помощи этого метода можно изготавливать двухкомпонентные изделия. Во время него сначала отливается основная заготовка, которая затем перемещается в другую форму, где осуществляется нанесение второго слоя полимера. Этот способ наименее продуктивный из все вышеперечисленных.

Выбор необходимого оборудования

После решения организационных моментов и выбора помещения можно приступать к выбору и приобретению оборудования. Оно представлено моделями как отечественного, так и импортного производства. Достоинством первых чаще всего является только цена. Импортное оборудование хоть и стоит значительно дороже, но зато оно значительно более качественное и надежное.

При организации производства понадобится следующее оборудование для литья пластмасс:

Термопластавтомат

Представляет собой инжекционно-литьевую машину, предназначенную для изготовления штучных изделий. Термопластавтоматы или экструдеры – это наиболее используемый вид оборудования, с помощью них производится более 2/3 всех пластиковых изделий в мире. В независимости от модели каждая машина для литья пластмасс обязательно состоит из следующих конструктивных узлов:

  1. Инжекционного. В нем происходит расплав и подача пластика.
  2. Смыкания. Он отвечает за смыкание и разведение формы в процессе литья.
  3. Привода, отвечающего за работу всех подвижных узлов.

Все существующие на данный момент экструдеры по типу механизма, создающего давление можно классифицировать на следующие типы:

  1. Одночервячные. Их основным достоинством является простота конструкции и небольшой размер материальной камеры.
  2. Двухчервячные. Отличаются более качественным перемешиванием полимером и улучшенными производственными характеристиками.
  3. Червячно-поршневые.
  4. Поршневые.

Также в зависимости от расположения прессовой части различают следующие типы литьевых машин:

  • горизонтальные;
  • угловые с вертикальным прессом;
  • вертикальные;
  • угловые с горизонтальным прессом.

Цена на такие агрегаты колеблется от 200 тысяч рублей за бывшие в употреблении, до 1-2 млн. руб. за новые.

Пресс-формы

Пресс-формы для литья пластмасс – это основной вид оснастки термопластавтоматов. Для производства каждого изделия изготавливается своя индивидуальная форма. Принцип ее работы очень прост. Литьевая машина осуществляет впрыск расплавленного пластика в форму. После его охлаждения она размыкает форму и выталкивает из нее уже готовое изделие. Формы для литья пластмасс могут изготавливаться из различных марок стали. Это сказывается на количестве их производственных циклов. Оно может колебаться от 100000 до 1 млн.

Вакуумный загрузчик сырья

Вакуумные автозагрузчики полимерного сырья – вид периферийного оборудования, позволяющий значительно ускорить и облегчить процесс подачи полимерных материалов в загрузочные бункеры термопластавтоматов. По своим конструктивным особенностям могут разделяться на вертикальные и раздельные модели. Первые – выполняют стандартные функции, вторые – используются при транспортировке полимеров на дальние расстояния.

Холодильный агрегат

Холодильные агрегаты или по-другому чиллеры используются для охлаждения воды при производстве пластмасс под давлением. Они позволяют существенно снизить продолжительность производственного цикла.

Все вышеперечисленное оборудование используется для литья в условиях массового производства. Но что делать, если вам не нужны тысячи идентичных изделий? Выход из этого положения – это мелкосерийное литье пластмасс в домашних условиях.

Домашнее литье пластика

Домашнее литье пластика своими руками – это разновидность промышленного варианта изготовления пластиковых изделий. Оно позволяет изготавливать любые не очень крупные изделия. Например, такие как:

  • различные колпачки и крышки;
  • корпуса;
  • игрушки;
  • кубики;
  • посуду;
  • сувениры.
Читайте также:  Маркировка цветных металлов и сплавов

Оборудование для мелкосерийного литья

Мелкосерийное литье не требует приобретения дорогостоящего оборудования. Для небольшой мастерской вполне будет достаточно приобрести следующее:

  1. Настольный ручной станок для литья пластмасс.
  2. Формообразующая деталь пресс-формы.
  3. Силикон для форм.
  4. Двухкомпонентный пластик.

Настольный аппарат для литья – это разновидность литейного оборудования, использующаяся для мелкосерийного производства. Свою работу он может осуществлять как при помощи одноместных, так и многоместных форм. Для установки такого станка вполне достаточно обычного рабочего стола небольшой площади, главное, чтобы он был устойчивым.

В настоящий момент существуют модификации станков с электромеханическим приводом. Они более надежны и просты в обслуживании. Некоторые из продвинутых моделей таких агрегатов даже оснащаются автоматическим узлом смыкания. Ручной аппарат для литья позволяет изготавливать в час в среднем от 10 до 15 изделий.

Самостоятельное изготовление пресс-форм из силикона

Формы для литья пластмасс в домашних условиях можно изготовить самостоятельно. Для этого сначала придется подготовить модель образец. Ее изготовление можно заказать у владельца 3D-принтера.

Далее действуем следующим образом:

  1. При помощи широкой кисточки аккуратно обмазываем образец тонким слоем силикона.
  2. Помещаем его в заранее приготовленную опалубку.
  3. Заполняем силиконом весь объем опалубки.
  4. Ждем 7-8 часов до полного застывания силикона.
  5. Делаем разрезную форму.

Ваша первая форма готова теперь можно начинать ручное литье.

Основные виды силиконов для изготовления пресс-форм

Силиконов для изготовления пресс-форм существует достаточно много, ниже рассмотрены наиболее распространенные из них:

  1. Mold Star 15,16,30. Эта серия силиконов отлично застывает при комнатной температуре. Может использоваться для производства форм с очень хорошей детализацией. Химически чувствительны к латексу и сере. Цифра в классификации означает показатель твердости. Имеют двухкомпонентную основу, которая смешивается непосредственно перед заливкой.
  2. Rebound 25, 40. Используется для создания форм по методу «в намазку». Силикон просто наносится на образец кистью. Могут использоваться в сочетании с различными пластификаторами и модификаторами. Являются двухкомпонентными составами.
  3. Sorta Clear 18, 37, 40. Полупрозрачные силиконы, хорошо подходящие для создания разрезных форм. Также могут совместно использоваться с различными добавками и ускорителями застывания.

Основные характеристики двухкомпонентных пластиков

Жидкие двухкомпонентные пластики довольно широко используются при мелкосерийном литье. Марок таких полимеров довольно много. Их основное отличие состоит в плотности и твердости готовой продукции. Также в зависимости от добавок они могут иметь различную фактуру и цвет. После смешивания компонентов, входящих в состав полимера, начинается ускоренный процесс застывания или по-другому полимеризации, который длится обычно не более 10 минут.

Использование жидких пластиков позволяет воплощать в жизнь самые различные дизайнерские решения. Также такие полимеры очень часто применяются для создания прототипов и моделей при конструкторских разработках.

Изделия из жидкой пластмассы ни в чем не уступают аналогам промышленного производства. Они такие же прочные, красивые и долговечные. К тому же рынок жидких полимеров постоянно расширяется и улучшается, что дает возможность приобретать все более совершенствованные образцы.

Технология литья в силиконовые формы

Для силиконовых форм потребуется также приобрести специальный жидкий пластик для литья. Он не требует предварительного разогрева и отлично застывает при комнатной температуре. Литье пластика в силиконовые формы выглядит следующим образом:

  1. Форма для литья тщательно очищается от пыли и прочих загрязнений.
  2. Обе половинки формы прочно закрепляются при помощи резинок, скотча или любых других подручных материалов.
  3. В емкости разводится двухкомпонентный пластик для литья. Обе его составляющих следует размешивать очень тщательно. Действовать при этом нужно как можно быстрее. Уже через несколько минут пластик начинает схватываться. На этом этапе для придания определенного цвета в состав добавляется краситель.
  4. Тщательно перемешанная смесь тонкой струйкой заливается в форму. Она обязательно должна заполнить даже канал для литья. После процесса дегазации объем материала несколько уменьшится.
  5. Дождаться отверждения изделия. Обычно на это уходит не более 10-15 минут.

Литьевой пластик позволяет создавать своими руками небольшое количество оригинальной авторской продукции.

Технология литья с использованием ручного станка

Методы литья с использованием ручного станка чем-то похожи на производственные. Сам процесс выглядит следующим образом:

  1. Установка на станок литьевой насадки.
  2. Нанесение на поверхность формы слоя силикона.
  3. Установка формы на агрегат.
  4. Загрузка сырья в бункер.
  5. Размешивание и нагрев полимеров при помощи шнека.
  6. Литье.
  7. Охлаждение.
  8. Разборка формы и извлечение готового изделия.

Настольный пресс для литья идеально подходит для условий малого производства. Он отличается высокой универсальностью. Литье изделий он может осуществлять практически из любых видов полимеров. Для повышения производительности пресс для литья пластмассы следует оснащать сразу несколькими аналогичными формами. Это позволяет организовать практически бесперебойный процесс производства.

Также дополнительно готовые изделия могут скрепляться между собой при помощи специального сварочного экструдера. Это позволяет значительно расширить литьевой бизнес за счет выпуска более сложных изделий.

Полиэтилен – один из наиболее популярных на сегодня полимеров. Различные его виды – это практически разные пластики, которые отличаются порой друг от друга даже больше, чем от полимеров совершенно других видов. Так, полиэтилен высокого давления – это относительно мягкий и довольно эластичный продукт, а полиэтилен среднего или низкого давления – достаточно жесткий материал. Но есть и подобие – все полиэтилены могут похвастать своей морозостойкостью, благодаря которой могут эксплуатироваться до -70°С, а некоторые марки даже еще ниже – до -120°С.

Технология литья пластмасс под давлением

Полиэтилен достаточно просто перерабатывается, хотя среди множества соответствующих технологий наиболее популярной уже давно стало литье под давлением. Литье пластмасс под давлением – это последовательность операций, предусматривающих нагрев исходного вещества, его плавление до полужидкой фазы, далее впрыск подогретой вязкой массы под давлением в специальную форму, в которой происходит формирование готового изделия путем отверждения. Особенность этой технологии – ее цикличность, что несколько ограничивает ее производительность. Основные ее достоинства следующие:

  1. «всеядность» по отношению к пластмассам, которые перерабатываются;
  2. достаточно высокая производительность;
  3. высокое качество готовых изделий, зачастую не требующих никакой дополнительной обработки;
  4. вполне допустимо изготовление сложных по своей конфигурации деталей, в том числе тонкостенных;
  5. как правило, не требуется дополнительная обработка готовых изделий (кроме удаления литников);
  6. процесс изготовления готовой продукции допускает полную его автоматизацию, при этом уже наработаны тысячи образцов подобного оборудования.

Имеются, однако, и недостатки у этого метода:

  1. оборудование по этому технологическому процессу является довольно сложным, а потому и недешевым;
  2. практическое применение автоматического оборудования для реализации данного технологического процесса требует достаточно высокой квалификации персонала.

Достоинства, однако, перевешивают недостатки, благодаря чему наибольшее применение, как нетрудно догадаться, получили машины, реализующие именно эту технологию – литье пластика под давлением, поскольку именно она является достаточно точной, массовой, и предоставляет все возможности по ее автоматизации.

Оборудование для литья под давлением

Центральным узлом любого оборудования, предназначенного для литья пластика под давлением, является пресс-форма, от качества которой довольно сильно зависит качество готовой продукции. Кроме пресс-форм требуются также средства подготовки и подачи сырья, подогрева и поддержания температуры, подачи расплава в пресс-форму, постепенного охлаждения пресс-формы, заполненной под давлением исходным материалом, а также средства механизации и автоматизации процесса, облегчающие работу, увеличивающие ее производительность и повышающие качество готовой продукции. В зависимости от конкретных условий, указанный комплект может быть полным, включающим в себя все перечисленное и даже более, или неполным, ограничивающимся пресс-формой и минимумом навесного оборудования.

Надо сказать, соответствующее оборудование (машины для литья под давлением) изготавливается в современном мире самое различное, поэтому познакомиться со всем его многообразием нет никакой возможности. Но, как пример, мы можем рассмотреть чуть подробнее саму процедуру литья под давлением. Упрощенно сам принцип этой технологии выглядит примерно так:

Рисунок: слева – исходный пласт-порошок поступает в цилиндр, справа – процесс прессования.

Порошок полимера (например, полиэтилена) подается через приемный бункер литьевого аппарата в цилиндр, в котором под воздействием подогрева расплавляется. После этого цилиндр примыкает своим соплом к собранной форме, а плунжер от воздействия подаваемого на него давления перемещает расплавленный материал влево (см.рис.), заполняя им полость формы. В итоге объем формы заполняется расплавленным полимером, после чего плунжер убирается в крайнюю правую позицию (см.рис). После этого расплаву дается возможность остыть, тем самым образовав готовое твердое изделие. После достаточного остывания форма разделяется, и из нее вынимается готовое изделие. Далее весь цикл начинается заново.

Таким образом, в данном технологическом процессе можно условно выделить такие фазы:

  1. дозируется исходный материал и далее отмеренная доза загружается в рабочий цилиндр;
  2. плавление исходного материала;
  3. подача (как правило, путем впрыска) расплавленного исходного пластика в сцепленную форму;
  4. выдерживание пластика в форме под давлением в течение необходимого времени;
  5. охлаждение достигшего заданной формы изделия во всем объеме;
  6. разделение формы с удалением из нее уже готового изделия.

Температуру пластикации материала необходимо поддерживать на уровне, превышающем температуру текучести пластика на 10 – 20°С. Если поднять значение температуры еще выше, то уменьшится вязкость расплава, а значит, облегчатся условия формовки изделия, повысится производительность процесса, однако одновременно с этим резко увеличивается и скорость старения пластика, что недопустимо.

Читайте также:  Разметочный инструмент по металлу

Рабочую температуру формы следует держать несколько ниже температуры размягчения пластика, однако слишком заниженное ее значение может стать существенной преградой для нормального заполнения формы во время впрыска расплавленного пластика. Ввиду противоречивости требований выбрать оптимальное значение температуры проще всего экспериментально. Время изготовления готового изделия определяется суммой времен подачи порошка, его плавления, впрыскивания расплавленного материала внутрь полости формы, выдержки заготовки под необходимым давлением, охлаждения.

Выдержка изделия под давлением должна заканчиваться, как только застынет расплав во впускных каналах формы. Требуемая продолжительность времени зависит от свойств конкретного пластика, от температуры расплавленного пластика, от температуры формы, от свойств литниковой системы. Длительность охлаждения зависит от степени нагрева материала и формы, объемом изделия. Именно это время (длительность охлаждения) вносит самый большой вклад в общую длительность цикла.

Наибольшая доля отходов при литье под низким давлением – это пластик, застывший в литниках. Однако все отходы литья, осуществляемого по данной технологии, могут быть использованы повторно.

Примеров подобного оборудования в Интернете можно найти множество в силу распространенности как полиэтилена, так и технологий его получения и применения, например, видео процесса литья под давлением вы можете увидеть ниже.

Суть технологии.

Литье под давлением — метод формования изделий из полимерных материалов, заключающийся в нагревании материала до вязкотекучего состояния и передавливании c большой скоростью его в закрытую (сомкнутую) литьевую форму, где материал приобретает конфигурацию внутренней по­лости формы и затвердевает.

Этим методом получают изделия массой от нескольких граммов до нескольких килограммов с толщиной стенок 1—20 мм (чаще 3—6 мм). Для осуществления литья под давлением чаще всего применяют шнековые литьевые машины (термопластавтоматы с червячной пластикацией), на которых устанавливают литьевые формы различной конструкции.

Принципиально, суть технологии литья под давлением состоит в следующем (рис. 10.1). Расплав полимера подготовлен и накоплен (l = nom) в материальном ци­линдре литьевой машины к дальнейшей подаче в сомкнутую форму (позиция а). Далее, материальный цилиндр смыкается с узлом фор­мы, а пластикатор (в данном случае — невращающийся червяк) осевым движением со скоростью Voc перемещает расплав в форму (позиция б). В результате осевого движе­ния червяка форма заполняется расплавом полимерного материала, а пластикатор сме­щается в крайнее левое (на рисунке) положение (позиция в, l = 0). Далее расплав в фор­ме застывает (или отверждается — в случае реактопластов) с образованием твердого изделия (позиция г). Материальный цилиндр продолжает оставаться в сомкнутом с си­стемой формы положении. В этой ситуации червяк начинает вращаться с ωч = nom, подготавливает и транспортирует расплав в переднюю зону материального цилинд­ра и при этом отодвигается назад. После накопления требуемого объема расплава (расстояние l = nom) вращение червяка прекращается (ωч = 0). Он занимает исходное к дальнейшим действиям положение. После завершения процесса затверде­вания пластмассы фор­ма размыкается, и изделие удаляется из нее (позиция д). Для обеспечения требуемого температурного поля в литьевой форме обогреваемый материальный цилиндр отодвигается в сторону от формы. Далее цикл повторяется.

-Технологический процесс литья под давлением

Технологический процесс литья изделий из термопластичных полимеров состоит из следующих операций:

1) плавление, гомо­генизация и дозирование полимера;

2) смыкание формы;

3) подвод узла впрыска к форме;

4) впрыск расплава;

5) выдержка под давлением и отвод узла впрыска;

6) охлаждение изделия;

7) рас­крытие формы и извлечение изделия.

– Плавление, гомогенизация и дозирование расплава

Данная операция осуществляется периодически через равные промежутки времени и с постоянной для каждого конкретного изделия частотой вращения шнека. Плавление полимера проис­ходит за счет передачи теплоты от нагретых стенок цилиндра, а также вследствие диссипации энергии вязкого течения расплава и трения гранул. Во время впрыска расплава шнек не вращается, поэтому нагревание гранул происходит только за счет теплопере­дачи.

Операция дозирования осуществляется в результате пере­мещения полимера в переднюю часть цилиндра при вращении шнека. Вращение шнека включается после окончания выдержки под давлением предыдущего цикла литья и уменьшения давления в цилиндре термопластавтомата. При давлении впрыска (60-140 МПа) нагрузка на шнек очень велика и вращение его не­допустимо. Дозирование сопровождается сжатием и нагреванием гранул с последующим переходом полимера в вязкотекучее со­стояние. Для обеспечения хорошей гомогенизации расплава во время дозирования с помощью поршня узла впрыска на шнеке создается усилие подпора, поэтому шнек отходит не свободно, а преодолевая давление подпора. Следует заметить, что давле­ние подпора увеличивает температуру расплава и повышает ее однородность по сечению в каналах шнека.

Шнеки литьевых машин конструктивно отличаются от экструзионных. Они обычно имеют меньшую длину (L/D = 15-17) и степень сжатия для них равна i = 2-2,5. Это объясняется тем, что в литьевых машинах не требуется создания во время дозиро­вания высоких давлений и не нужна очень хорошая гомогениза­ция, так как при впрыске происходит дополнительный нагрев расплава и он хорошо перемешивается вследствие течения в лит­никовых каналах. Недостаток в гомогенизации при дозировании восполняется на последующей технологической операции, т. е. при впрыске расплава в форму.

Для предотвращения передачи давления литья (инжекции) на полимер, находящийся в винтовом канале червяка, на его головной части устанавливается наконечник с обрат­ным клапаном (рис. 10.6). Это, во-первых, позволяет при впрыске сохранить неизмен­ным подготовленный к инжекции объем расплава, и, во-вторых, исключить полностью или в значительной степени образование встречного, обратного, потока расплава, снижающего пластикационную способность червяка.

Форма и действие наконечника с клапаном должны быть такими, чтобы расплав также не застаивался в зоне накопления. С этой целью используют так называемые са­моочищающиеся наконечники (рис. 10.6, а). Для низковязких расплавов могут исполь­зоваться наконечники с шариковым клапаном (рис. 10.6, б), а для нетермостабильных ПВХ наконечники с гребневидной нарезкой конической части (рис. 10.6, в).

Для полимерных материалов типа непластифицированного ПВХ на червяках устанавливают длинноконусные наконечники без кла­панов (рис. 10.7). Такая конструкция исключает образова­ние застойных зон, а благодаря высокой вязкости расплава его обратное течение по узкому коническому зазору между конусом червяка и корпусом сопла, к тому же с возрастающим диаметром, практически исключаются.

В конце впрыска конический хвостовик шнека входит в коническое отверстие сопла, поэтому расплав почти полностью выдавливается из цилиндра, за счет чего уменьшается время его пребывания в нагретом состоянии и исключается термическая деструкция полимера. Чтобы расплав во время дозирования не вытекал из отверстия сопла, узел впрыска не отводят от формы или выходное отверстие мундштука перекры­вается клапаном. Наиболее часто это осуществляется с помощью самозапирающегося сопла.

Объем дозы расплава задается значением хода шнека вдоль цилиндра при его вращении за счет изменения расстояния между кулачками конечных выключателей. После того как наберется определенная порция расплава, шток при отходе назад нажимает на конечный выключатель и вращение шнека прекращается.

В отличие от экструзии температура по зонам цилиндра при литье под давлением устанавливается значительно выше. Это необходимо для уменьшения вязкости расплава, чтобы в мо­мент впрыска в отверстиях сопла и литников не возникали боль­шие перепады давлений. Однако при очень высокой температуре на изделиях образуется облой, т. е. расплав очень сильно затекает в зазоры по линии разъема формы. Поэтому температуру расплава выбирают, учитывая:

· толщину сте­нок изделия;

· площадь поверхности отливки;

· реологические свойства полимера;

· раз­меры литниковых каналов;

-Смыкание формы и подвод узла впрыска

После окончания паузы, предусматриваемой по завершении операции извлечения отливки, изготовленной в предыдущем цикле, включается механизм смыкания. Смыкание формы осуществляется в результате перемещения подвижной плиты ТПА вместе с закрепленной на ней разъемной частью формы и создания определенного усилия. Усилие смыкания Nсм необходимо для исключения раскрытия формы в момент заполнения ее расплавом, оно должно быть равно:

;

где рф — давление в форме, усредненное по площади отливки; Fизд и Fл.c. — пло­щадь изделия и литниковой системы в плоскости разъема формы.

В том случае, когда площадь отливки очень велика и расчетное усилие превышает максимальное усилие смыкания машины, отформованные изделия имеют толстый облой. Иногда по этой же причине может произойти раскрытие формы.

Подвод узла впрыска к форме производится отдельным меха­низмом, при этом сопло цилиндра упирается в литниковую втулку формы и создается необходимое давление, исключающее утечку расплава. В момент подвода узла впрыска сопло должно рас­полагаться соосно с литниковым каналом формы.

– Впрыск расплава

При осевом движении шнека вдоль цилиндра к соплу во время впрыска клапан шнека смещается, перекрывает каналы, исключая обрат­ное течение расплава по винтовым каналам шнека. Расплав полимера под действием давления начинает течь через литниковую систему в фор­мующую полость формы, заполняет ее, а затем под действием давления

Рис. 7.4. Цикл-диаграмма процесса литья под давлением: 0а — заполнение формы расплавом; ab — сжатие; bc — вы­держка под давлением; cd — охлаждение изделия
Читайте также:  Распиновка hdmi кабеля на звук
Рис. 7.5. Схема заполнения формующей полости расплавом в струйном (а) и в лами­нарном (б) режимах: 1 — впускной литник; 2 — стенки формы; 3 — струя расплава; 4 — твердый слой по­лимера; 5 — фронт течения расплава.

сжимается. Так как заполнение формы происходит в течение очень короткого времени (1-3 с), эту операцию назы­вают впрыском. Вначале расплав заполняет литниковые каналы формы, а затем формующую полость, поэтому давление постепенно повышается. Изменение давления при впрыске показано на рис. 7.4 (отрезок Оа).

В зависимости от скорости впрыска и вязкости расплава изменяется количество теплоты, выделяющейся вслед­ствие диссипации энергии вязкого течения, и происходит допол­нительный разогрев полимера.

Изменение температуры при литье под давлением показано на рис. 7.4.

Характер заполнения формы расплавом зависит от скорости впрыска и размеров формующей полости. Так, при очень высокой скорости впрыска расплав после выхода из литников движется в формующей полости вначале зигзагообразно (рис. 7.5, а), а по мере заполнения полости формы расплавом происходит уплотне­ние отдельных зигзагов и струйный режим переходит в лами­нарный — течение сплошным потоком, (рис. 7.5, б).

Рис. 7.8. Заполнение полости формы расплавом при наличии арматуры или формующих знаков: 1 — формующий знак; 2 — линия спая.

На характер течения расплава оказывает также влияние наличие в формующей полости знаков или арматуры. При обтека­нии их поток расплава разделяется, и при слиянии этих потоков на противоположной стороне образуется линия спая (рис. 7.8). После огибания арматуры или знака два потока встречаются друг с другом кромкой фронта, где расплав уже частично охлажден, и дальше продолжают двигаться без взаимного перемещения, т. е. между ними отсутствует сдвиг слоев. Такой характер движения не способствует прочному соединению потоков, и изделие полу­чается со стыковым швом, по которому при нагружении проис­ходит разрушение. Для уменьшения влияния стыковых швов на прочность изделия литье под давлением следует проводить при высоких температурах расплава и формы, а также при по­вышенной скорости впрыска. Стыковые швы можно упрочнить за счет правильного подвода литника к формующей полости.

После заполнения формы полимером происходит дальнейшее увеличение давления до заданного значения и сжатие расплава, вследствие чего плотность его возрастает. До значения рф давле­ние повышается в течение короткого времени (доли секунды) (см. отрезок ab на рис. 7.4). Давление выбирается из условия до­стижения необходимой плотности расплава, чтобы в процессе охлаждения не происходило значительного уменьшения объема. При недостаточном сжатии увеличивается усадка изделия и могут образовываться раковины или утяжины.

-Выдержка под давлением

После заполнения формы расплавом происходит его охлажде­ние, в результате чего увеличивается плотность и уменьшается объем, занимаемый полимером. Вследствие уменьшения объема через литники в форму продолжает поступать дополнительная порция расплава и давление в ней поддерживается постоянным. Таким образом, после окончания операции впрыска наступает некоторое равновесие давлений в цилиндре машины и в форму­ющей полости и течение переходит в медленное дополнительное нагнетание расплава (подпитку); последняя компенсирует умень­шение объема полимера в форме при его охлаждении.

Рис. 7.9. Цикл-диаграмма литья при различ­ных режимах: 0abcd — оптимальный режим; 0ab"c"d" — вы­сокое давление в форме; 0abc’fd’ — малая вы­держка под давлением

Выдержка под давлением (отрезок на рис 7.4) обычно про­должается до тех пор, пока расплав в центральной части впускного литника не охладиться ниже температуры текучести. Чем больше выдержка под давлением, тем сильнее понижается температура расплава в формующей полости, поэтому при последующем охлаждении размеры изделия изменяются меньше. То же наблюдается при повышении давления в форме. Таким образом, выдержка под давлением компенсирует усадочные процессы, происходящие в форме, и зависит от размеров литника, температуры рас­плава и формы, а также от тепло-физических свойств полимера. Вы­держка под давлением целесооб­разна, пока полимер в форму­ющей полости находится в рас­плаве, поэтому глубину впускного литника обычно выбирают с учетом заданной усадки, но меньше толщины стенки изделия.

Давление при выдержке рассчитывают с учетом всех техно­логических параметров процесса, а также размеров литников. При правильно выбранном давлении после выдержки при охла­ждении в формующей полости остается некоторое остаточное давление рост. Если чрезмерно увеличить давление в форме (диаг­рамма Оab"c"d" на рис. 7.9), то в конце цикла литья остаточное давление рост, будет очень большим. Под действием рост полимер плотно прижимается к стенкам формующей полости, силы трения возрастают, поэтому затрудняется извлечение изделий из формы и при выталкивании может произойти их разрушение.

Обратная картина наблюдается при малой выдержке под давлением или создании низкого давления в форме. Если сопло машины отводится раньше, чем произойдет охлаждение расплава в литнике, полимер вытекает из формы и давление падает (диаграмма Oabc’fd’ на рис. 7.9). Из-за недостаточной компенсации усадочных процессов на изделиях в этом случае появляются утяжины и раковины (пустоты) или увеличивается усадка.

-Охлаждение изделия

Фактически охлаждение расплава начинается сразу после впрыска расплава, однако как отдельная технологическая опера­ция охлаждение задается с помощью реле времени по окончании выдержки под давлением. Таким образом, выдержка при охлажде­нии необходима для окончательного затвердевания расплава полимера и достижения определенной конструкционной жестко­сти изделий, исключающей их деформацию при извлечении из формы.

Температура полимера перед размыканием формы должна быть такой, чтобы при извлечении изделия не произошло его коробления или разрушения. В процессе охлаждения температура расплава уменьшается, а так как объем остается неизменным, то давление в форме снижается (отрезок cd на рис. 7.9).

Литьевые изделия могут иметь весьма разнообразную конфи­гурацию и размеры, поэтому на процесс охлаждения оказывает влияние разнотолщинность стенок, которая служит основной при­чиной появления внутренних остаточных напряжений. Если изделие имеет различ­ную толщину стенок, то после охлаждения степень ориентации будет различной и это вызовет появление остаточных напряжений. При извлечении таких изделий из формы может произойти их коробление или с течением времени образуются микротрещины. Коробление возможно и у изделий, не имеющих разнотолщинности стенок, в случае их неравномерного охлаждения. Поэтому конструкция охлаждающих каналов формы должна обеспечивать равномерное температурное поле.

Рис. 7.10. Коробление изделий вследствие неравномерного охлаждения (T’ф > Tф) (а) и при неправильном расположении литника (б").

Зависит коробление и от расположения литника в форме (рис. 7.10, б). При литье коробчатых изделий литник, как пра­вило, подводится к днищу. При подведении литника к боковым стенкам может произойти их коробление вследствие неодинаковой степени ориентации макромолекул. Таким образом, для получения качественных изделий необходимо создавать одинаковые условия течения расплава и равномерную скорость охлаждения.

-Раскрытие формы и извлечение изделия

После окончания операции охлаждения происходит раскрытие формы. Подвижная часть формы 3, закрепленная на плите узла смыкания, отводится, при этом изделие 4 уходит вместе с ней (рис. 7.12). Выступающая часть толкателей 2 упирается в ограни­читель 1 и они останавливаются вместе с изделием 4, а подвижная часть формы 3 отводится дальше, за счет чего происходит извлечение изделия. Одновременно с изделием из литниковой втулки извлекается литник. Расплав при течении из центрального лит­ника затекает в отверстие плиты 3, которое имеет обратный ко­нус, и застывает в нем. В результате образуется замок, с помощью которого при раскрытии формы происходит извлечение литника из литниковой втулки.

При изготовлении втулок или коробок для извлечения их из формы можно использовать плиту съема (рис. 7.13). При отводе подвижной части формы 2 изделия 6 остаются на знаках 5 и дви­жутся вместе с ними. Когда толкатели 3 упрутся в неподвижный ограничитель 1, плита съема 4 остановится, а подвижная часть формы 2 со знаками 5 будет продолжать отходить влево, при этом изделия 6 задерживаются плитой 4 и снимаются со знаков 5. В формах с плитой съема литник извлекается из литниковой втулки с помощью знака 7, имеющего на торце сферический вы­ступ. В момент впрыска расплав охватывает этот выступ и после охлаждения удерживается на нем. В момент размыкания формы литник из канала извлекается знаком 7, а затем срывается со сферического выступа плитой съема 4 вместе с изделиями.

Рис. 7.12. Извлечение изделия толкателем: 1 — ограничитель; 2 — толкатели; 3 — подвижная часть формы; 4 — изделие; 5 — литник. Рис. 7.13. Извлечение изделия плитой съема: 1 — ограничитель; 2 — подвижная часть формы; 3 — толкатель; 4 — плита съема; 5 — формующий знак; 6 —изделие; 7 — литниковый знак.

При производстве изделий из полимеров, обладающих сильной адгезией, для уменьшения прилипания полимера к поверхности формующей полости на нее после извлечения изделия с помощью специальных аэрозольных баллончиков наносят антиадгезионную смазку. Обычно смазку наносят после нескольких циклов литья. При изготовлении армированных изделий цикл литья завершается установкой в форму арматуры, которую иногда перед этим подогревают.

Лекция 6.

Дата добавления: 2017-12-03 ; просмотров: 1592 ;