Со2 что за газ

6. СО2 И ФИЗИОЛОГИЯ ДЫХАНИЯ АКВАРИУМНЫХ РЫБ

Подавляющему большинству свободноживущих многоклеточных животных для дыхания необходим кислород. С другой стороны также жизненно необходимо выведение из организма образующегося углекислого газа. Исполнение и сопряжение этих процессов составляют сущность т.н. внешнего дыхания. В ракурсе нашей темы важны два аспекта. Во-первых, доставку кислорода и выведение небезопасных продуктов метаболизма рыб выполняет система красной крови – эритроциты и плазма. Во-вторых, рыбы имеют замкнутую систему кровообращения, или систему кровообращения с высоким давлением. В таких системах органы и ткани получают необходимое количество крови не только в зависимости от интенсивности своей жизнедеятельности, но и в зависимости от состояния самих сосудов. Рассмотрим это несколько подробнее.

Транспорт газов в организме рыб . Основную часть работы, связанную с обменом газов в организме, т.е. снабжение кислородом и удаление углекислого газа, выполняет система красной крови: плазма и эритроциты. Как известно, гемоглобин ( Нb ) эритроцитов обладает способностью обратимо связывать кислород: Нb+О 2 ↔НbО 2 . Доля связанного гемоглобина (оксигемоглобина, HbО 2 ) зависит от содержания кислорода в среде, окружающей эритроциты, т.е. в плазме. Тогда, казалось бы, одной разницы по содержанию кислорода в жаберных капиллярах и капиллярах тканей вполне достаточно для выполнения гемоглобином своей кислород-транспортной функции. Однако, ввиду особой важности задачи снабжения кислородом дышащих тканей, эволюция сформировала множество механизмов, обеспечивающих тонкую зависимость свойств гемоглобина крови как от экологических, так и от физиологических условий. Во-первых, эритроциты содержат несколько типов гемоглобинов, различающихся по своим свойствам. Во-вторых, гемоглобин по сути является аллостерическим ферментом, т.е. эффективность реакции Hb+O 2 -HbO 2 кроме содержания кислорода, регулируется множеством других факторов, среди которых особое значение имеют концентрации углекислого газа и ионов водорода.

Среда с высоким содержанием СО 2 (капилляры активно функционирующих тканей) усиливает, облегчает диссоциацию HbO 2 , что приводит к более полной отдаче кислорода, «залповой разрядке» HbO 2 , по сравнению с таковой в неактивных тканях. Такое влияние СО 2 на отдачу гемоглобином кислорода известно как эффект Бора. Считается, что у рыб эффект Бора более выражен, чем у наземных позвоночных.

Обеспечив ткани кислородом, кровь должна выполнить и другую часть своей работы – удалить небезопасные продукты метаболизма, в том числе СО 2 , от работающих тканей. Скорость его образования в активно работающих тканях превышает емкость буферных систем крови и может привести к понижению ее рН . Однако стабильность рН внутренней среды организма является основой фундаментального понятия гомеостаза, сформулированного К. Бернаром: постоянство внутренней среды организма является основой независимой жизни. Установлено, что для рыб изменение рН крови в ту, или другую сторону более, чем на 0,5 единицы смертельно. В основе механизма выведения СО 2 при постоянном значении показателя рН лежат процессы, описываемые уже известным нам уравнением Хендерсона-Хассельбальха:

рН = рК 1 +lg[HCO 3 – ]/[CO 2 ]

Т.е., СО 2 переводится в НСО 3 – ; при этом отношение [HCO 3 – ]/[CO 2 ] сохраняется постоянным при увеличении концентрации его компонентов, и значение рН не изменяется. Этот процесс происходит в эритроцитах при участии цинк-содержащего фермента карбангидразы. СО 2 , как и О 2 , являясь мелкой, не несущей заряда молекулой, свободно диффундирует через клеточные мембраны эритроцита по градиенту концентрации. В рабочих капиллярах это направление плазма – эритроцит. В эритроците карбангидраза многократно ускоряет реакцию СО 2 +Н 2 О→Н + +НСО 3 – , идущую в свободной воде весьма слабо ( К 1 =4•10 -7 ). Накапливающийся в эритроцитах НСО 3 – переводится в плазму в обмен на хлорид-ион Cl – благодаря работе ионных каналов. Это обеспечивает свободную работу карбангидразы, но приводит к перераспределению хлорид-ионов из плазмы в эритроцит – т.н. хлоридный сдвиг. Остающийся в эритроците ион водорода Н + не изменяет рН его цитоплазмы благодаря буферным свойствам самого гемоглобина: обладая менее выраженными по сравнению с HbO 2 кислотными свойствами, Hb связывает образующийся в результате работы карбангидразы ион водорода – т.н. эффект Холдейна.

В капиллярах жаберного аппарата происходят процессы, обратные рассмотренным. Углекислый газ покидает плазу крови по градиенту концентрации в направлении плазма – окружающая среда. Несущий заряд гидрокарбонат-ион НСО 3 – , в отличие от СО 2 , не способен проникать через клеточные мембраны жаберного эпителия. Но в соответствии с уравненим Хендерсона-Хассельбальха, изменение отношения НСО 3 – /СО 2 при снижении концентрации СО 2 приводит к разложению гидрокарбонатов по реакции: НСО 3 – → СО 2 +ОН – и СО 2 свободно диффундирует в воду.

Оставшийся ОН – нейтрализуется освободившимися после образования НbО 2 ионами водорода Н + – процесс, обратный эффекту Холдейна. Жаберный эпителий, как и эритроциты, также обладает повышенным содержанием карбангидразы, но ее роль в процессе обмена СО 2 не совсем ясна. Более вероятным представляется сопряжение работы карбангидразы с механизмами удаления аммония NH 4 + и Н + , а также поглощением ионов Na + и Cl – , протекающими у рыб в жабрах. Приблизительно таким образом работают механизмы обмена газов в естественных условиях, т.е. в воде, находящейся в состоянии, близком к газовому равновесию и содержащей мало углекислого газа.

Низкое содержание СО 2 в большинстве природных вод и постоянство направления градиента концентрации углекислого газа в направлении организм – среда, дало основание некоторым физиологам для радикальной формулировки: рыбы живут в углекислотном вакууме. Именно поэтому рыбы обладают минимальной среди всех позвоночных буферной емкостью крови. К сожалению это не всегда так даже в природе, например, в тропических водоемах с кислой водой, рН которой, как мы убедились, зависит от содержания СО 2 . В этих случаях рассмотренный выше эффект Бора мог бы сыграть отрицательную роль. Но природа решила это противоречие весьма просто: живущие в таких водах рыбы не обладают выраженным эффектом Бора и их гемоглобин способен к транспорту кислорода даже при высоком содержании СО 2 в крови. Это относится к большинству успешно освоенных аквариумистикой мелких харациновых, карповых, радужницам и др., о чем упоминалось выше. Для аквариумиста важно, что все они удовлетворительно переносят плотные посадки (т.н. «плотные» рыбы) и прекрасно чувствуют себя в слабощелочной воде. Тем не менее, кислые природные воды еще прячут в себе немало «запретных плодов»: взять хотя бы дискуса Хеккеля – Symphysodon discus Haeckel,1840…

В отличие от выше упомянутых, многие обитатели текущих и слабощелочных вод обладают гемоглобином, чувствительным к эффекту Бора, что при содержании их в аквариумах может привести к проблемам. При высоком содержании СО 2 в воде аквариума, низких значениях рН и dКН имеет место следующее противоречие. Содержание кислорода в воде достаточно для насыщения гемоглобина кислородом в жабрах. Но остаточное высокое содержание СО 2 в плазме крови приводит к уменьшению доли HbO 2 еще в магистральных артериях. При «залповой разрядке» такого оксигемоглобина в капиллярах активно работающих тканей, высвобождаемого кислорода оказывается уже недостаточно и развивается тканевая гипоксия. При этом жаберные рецепторы сигнализируют в дыхательный центр о нормальном насыщении крови кислородом, а от работающих тканей поступает диаметрально противоположная информация. Чтобы понять, что может происходить с организмом рыб в такой ситуации, необходимо рассмотреть особенности организации их сосудистого русла.

Читайте также:  Диодный мост на 12 вольт своими руками

Кровеносная система рыб . В замкнутой системе кровообращения каждый тип сосудов выполняет свою определенную физиологическую функцию. Кровь движется по сосудам от центра – сердца, к периферии – капиллярам. Сердце, являясь источником движения, создает необходимые для перемещения крови импульс и давление. Кровяное давление рыб четко кореллирует с частотой сердечных сокращений. Аорта и крупные магистральные артерии, благодаря эластичности своих стенок, сглаживают пульсовую волну и поддерживают скорость кровотока. Более мелкие артериолы, путем изменения своего просвета за счет тонуса гладкомышечной оболочки, регулируют кровоснабжение различных органов. Прекапиллярные артериолы определяют количество работающих в каждом органе капилляров, опять же за счет изменения своего просвета.

В собственно капиллярах происходит обмен жидкостей и газов между кровью и тканевой жидкостью, непосредственно омывающей элементы тканей. Стенки капилляров не имеют мышечных элементов, поэтому величина их просвета, а значит и возможность продвижения по ним крови, зависит только от давления крови в артериолах. Cуммарное сечение капилляров почти в 1000 раз больше сечения аорты (данные для млекопитающих). Объем капиллярного ложа составляет большую часть объема всего сосудистого русла и многократно превышает объем имеющийся крови. Поэтому для нормальной жизнедеятельности организма очень важна физиологическая управляемость системы кровообращения.

Венозная часть сердечно-сосудистой системы является емкостным, коллекторным звеном. Скорость кровотока в венах значительно ниже, чем в артериях. Вены могут вмещать до 80% крови, способствуя ее перераспределению в организме. Наиболее емкими являются вены брюшной полости, селезенки и кожи, составляя т.н. депо крови в организме. В состоянии покоя организм депонирует до 50% своей крови, да и в состоянии активности определенная часть крови всегда находится в депо. Физиологические механизмы депонирования крови и ее мобилизации из депо специфичны и к сожалению мало изучены даже у человека. Емкость венозной части сосудистого русла определяет очень важную величину венозного возврата крови к сердцу. При недостаточном венозном возврате крови возможна рефлекторная остановка сердца. Недостаточность венозного возврата крови к сердцу возможна, например, при расстройствах кровообращения, связанных с обширными травмами, некрозами, действием раздражающих кожу веществ. В основе этого явления лежит неуправляемое расширение капилляров, что приводит к падению кровяного давления и недостаточному венозному возврату.

Организм всегда обходится только частью имеющейся крови, снабжая ей лишь постоянно работающие (мозг, сердце, почки, жабры) и активно функционирующие структуры. В основе этого лежит т.н. принцип перемежающейся активности функционирующих структур: органы никогда не работают все вместе, а только поочередно и частично (Крыжановский Г.Н.). Из него же вытекает необходимость постоянного перераспределения крови и ее частичное депонирование.

Среди регуляторов кровоснабжения органов и тканей организма важное значение принадлежит углекислому газу. Но если СО 2 активно функционирующих структур является физиологическим стимулятором их местного кровоснабжения, то тотальное повышение уровня СО 2 крови вызывает ее перераспределение по механизму стресс-реакции. При этом происходит т.н. централизация кровообращения: продолжают активно снабжаться кровью только постоянно работающие органы (см. выше), а остальные оказываются на «голодном пайке» за счет сокращения прекапиллярных артериол. В результате кровь циркулирует только по магистральным сосудам и постоянно работающим органам – сердцу, мозгу, почкам, жабрам. Понятно, что такое состояние долго продолжаться не может, и если содержание СО 2 не уменьшится, организм отвечает формированием патологических процессов. Их конкретное проявление группоспецифично, но чаще всего это локальные кожные некрозы и нарушения обмена жидкости.

Так, у живородок, атерин наиболее, уязвима кожа. На теле, чаще всего возле спинного плавника или хвоста, появляются белые пятно, или сетка. Их размер и окраска увеличивается и усиливается. В течение 1-2 суток рыба погибает. По внешним признакам заболевание сравнивают с химическим ожогом (Р. Бауэр), или описывают как флексибактериоз, колумнариоз (Дж. Баслер). Антимикробные препараты малоэффективны. Даже по перенесении в другую воду, заболевшие рыбы погибают; выживают только экземпляры, у которых кожа не была повреждена. Молодь гораздо чувствительнее взрослых.

У некоторых цихлид – скалярий, акар, псевдотрофеусов – длительная централизация кровообращения приводит к застою крови в воротной вене печени. Вследствие этого увеличивается давление в капиллярах органов брюшной полости, что приводит к экссудации жидкости в брюшную полость и развитию асцита – водянки брюшной полости. Антимикробные препараты опять же малоэффективны, но нормализация условий содержания часто позволяет добиться положительных результатов. При этом проявляется одна из особенностей действия углекислого газа на организм: длительность периода восстановления близка к длительности периода воздействия (Массарыгин А.Г., 1973).

Золотые рыбы как бы объединяют в себе оба предыдущих типа. Но в отличие от живородок, их кожные реакции в силу возможности более длительного развития процесса, формируют несколько иную клиническую картину: локальные очаги кожного некроза отторгаются и образуются открытые, глубокие трофические язвы. Как и у живородок, их терапия также зачастую безуспешна.

Следует обратить внимание, что СО 2 в нормальных условиях является естественным физиологическим регулятором кровоснабжения органов. Поэтому его недостаток также может быть опасен, особенно для молоди. Но такие состояния легче контролировать, просто придерживаясь рекомендуемых значений показателя рН . Так, например, личинки звездчатого анциструса ( Ancistrus leucostictus ), черного ножа ( Apteronotus albifrons ) при рН>7,5 не переходят на экзогенное питание и даже при наличии стартового корма пассивно лежат на дне, погибая от голода. Как известно, СО 2 для молоди является мощным стимулятором двигательной активности. Информации по рекомендуемым значениям dКН , рН и др. в аквариумной литературе довольно много.

Подытожить разговор о СО 2 -системе можно с экологической точки зрения, поскольку грамотно устроенный декоративный аквариум все же является моделью экологической системы. В течение жизненного цикла организм рыб встречается с разнообразными экологическими факторами. Безусловно СО 2 и рН относятся к экологическим факторам, являясь также и факторами лимитирующими, поскольку и СО 2 , и рН влияют на выживаемость рыб. Диапазон колебаний содержания СО 2 в среде, совместимый с жизнью рыб не превышают 10 раз. Так например, если для многих живородок содержание СО 2 1-2мг/л является комфортным, то при 10-15мг/л СО 2 о долгой и «счастливой» жизни этих рыб не может быть и речи. В то же время, колебания концентраций многих ионов (для них биологические мембраны непроницаемы) большинство рыб выдерживают в диапазоне до 100 крат (2 порядка), и являются относительно этих факторов эврибионтами. Так, например, минимальная жесткость воды, согласно ПР СаСО3 составляет 0,35° dGH . Такое значение общей жесткости весьма рекомендуемо для размножения красных неонов ( Cheirodon axelrodi ). Но малек этого вида прекрасно себя чувствует и в воде с общей жесткостью 30° dGH . То же можно сказать и о гидрокарбонатах. Однако возможны и исключения. Так, для большинства рыб физиологический диапазон колебаний значения кислотности воды составляет 2 порядка, или 2 единицы рН : рН 6,0-8,0. Но есть и виды, диапазон устойчивости (толерантности) которых не превышает 10 крат – 1 единицы рН . К таковым относятся некоторые эндемики Танганьики, Амазонии ( Symphysodon discus ), являющиеся т.н. стенобионтными видами. Можно утверждать, что стенобионты не выдерживают более 10-кратного диапазона колебаний экологического гидрохимического фактора и стенобионтными по отношению к СО 2 являются многие аквариумные рыбы.

Читайте также:  Доильный станок для козы своими руками

Таким образом, действие углекислоты на рыб полностью укладывается в рамки закона толерантности Шелфорда: на организм отрицательно влияет как избыток, так и недостаток СО 2 и для комфортного самочувствия неодходимо его присутствие в «стандартных» количествах, определяемых dКН и газовым равновесием.

7.МИНИ-ПРАКТИКУМ

Аквариумисту всегда есть смысл знать состояние буферной системы воды своего аквариума. К счастью рынок предоставляет для этого широкий ассортимент недорогих гидрохимических тестов, как зарубежных, так и отечественных. На практике, при расчетах по приведенным выше уравнениям, наибольшие затруднения вызывает совмещение единиц измерения результатов теста с требованиями химии. Для решения уравнений необходимо представить концентрации измеренных параметров в молярной форме, тогда как тесты показывают значение жесткости (общей и карбонатной) – в градусах немецких, а углекислого газа – в мг/л. Тогда для расчета молярной концентрации СО 2 напомним формулу: [СО 2 ]=z/44 (10 -3 М, или mM), где z мг/л – измеренная с помощью СО 2 -теста концентрация углекислого газа.

Для пересчета единиц измерения жесткости можно предложить следующие формулы:

[Ca ++ ] = 0,18 (x ° dGH) (10 -3 M, или mM)
[HCO 3 – ] = 0,36(y ° dKH) (10 -3 M, или mM)

где x° и y° – соответственно общая и карбонатная жесткость, измеренная в немецких градусах.

В качестве примера рассмотрим: 1) воду из-под крана; 2) ту же воду, отстоянную в течение суток; 3) воду из старого аквариума с плотной посадкой рыбы, но почти без растений; 4) утреннюю воду из старого аквариума без аэрации, с большим количеством растений, но малым количеством рыб; 5) ту же воду вечером. Для удобства результаты измерений собраны в таблицу 1:

Диоксид углерода (двуокись углерода, углекислый газ, CO2) формируется путем взаимодействия двух элементов – кислорода и углерода. Диоксид углерода образуется при сжигании углеводородных соединений или угля, в результате ферментации жидкостей, а также в качестве продукта дыхания животных и человека. В атмосфере он содержится в небольших количествах. Растения поглощают двуокись углерода из атмосферы и превращают его в органические компоненты. При исчезновении этого газа из атмосферы на Земле практически не будет дождей и станет заметно прохладнее.

Свойства диоксида углерода

Диоксид углерода тяжелее воздуха. Он замерзает при температуре -78 °C. При замерзании из двуокиси углерода образуется снег. В виде раствора углекислый газ образует угольную кислоту. Благодаря некоторым свойствам диоксид углерода иногда называют «одеялом» Земли. Он с легкостью пропускает ультрафиолетовые лучи. Инфракрасные лучи излучаются с поверхности диоксида углерода в космическое пространство.

Углекислый газ выпускают в жидкой форме при низкой температуре, в жидкой форме при высоком давлении и в газообразной форме. Газообразную форму двуокиси углерода получают из отбросных газов при производстве спиртов, аммиака, а также в результате сжигания топлива. Газообразный диоксид углерода по свойствам представляет собой нетоксичный и невзрывоопасный газ, без запаха и цвета. В жидкой форме двуокись углерода – жидкость без цвета и запаха. При содержании более 5% углекислый газ накапливается в районе пола в слабо проветриваемых помещениях. Снижение объемной доли кислорода в воздухе может привести к кислородной недостаточности и удушью. Эмбриологи установили, что клеткам человека и животных двуокиси углерода необходимо около 7%, а кислорода – всего 2%. Двуокись углерода – транквилизатор нервной системы и прекрасное анестезирующее средство. Газ в организме человека участвует в синтезе аминокислот, оказывает сосудорасширяющее действие. Недостаток углекислого газа в крови приводит к спазму сосудов и гладкой мускулатуры всех органов, к увеличению секреции в носовых ходах, бронхах и к развитию полипов и аденоидов, к уплотнению мембран из-за отложения холестерина.

Получение диоксида углерода

Существует несколько способов получения диоксида углерода. В промышленности двуокись углерода получают из доломита, известняка – продуктов разложения природных карбонатов, а также из печных газов. Газовую смесь промывают раствором карбоната калия. Смесь поглощает двуокись углерода и превращается в гидрокарбонат. Раствор гидрокарбоната нагревают и он, разлагаясь, высвобождает углекислоту. При промышленном методе получения диоксид углерода закачивается в баллоны.

В лабораториях получение диоксида углерода основывается на взаимодействии гидрокарбонатов и карбонатов с кислотами.

Области применения диоксида углерода

В повседневной практике двуокись углерода используют достаточно часто. В пищевой индустрии углекислый газ используют в качестве разрыхлителя теста, а также в качестве консерванта. Его обозначают на упаковке продукта под кодом Е290. Свойства диоксида углерода также используют при производстве газированной воды.

Биохимики выяснили, что для повышения урожайности различных культур весьма эффективно удобрять воздух углекислым газом. Однако данный способ удобрения можно применять только в оранжереях. В сельском хозяйстве газ применяют для создания искусственного дождя. При нейтрализации щелочной среды двуокись углерода заменяет сильнодействующие минеральные кислоты. В овощехранилищах углекислый газ применяют для создания газовой среды.

В парфюмерной промышленности двуокись углерода применяют при изготовлении духов. В медицине углекислый газ используют для антисептического воздействия при проведении открытых операций.

При охлаждении углекислый газ превращается в «сухой лед». Сжиженный диоксид углерода расфасовывают в баллоны и отправляют потребителям. Углекислый газ в виде «сухого льда» используют для сохранения пищевых продуктов. Такой лед при нагревании испаряется без остатка.

Углекислый газ используют как активную среду при сварке проволокой. При сварке двуокись углерода разлагается на кислород и угарный газ. Кислород вступает во взаимодействие с жидким металлом и окисляет его.

В авиамоделировании двуокись углерода используется как источник энергии для двигателей. Двуокись углерода в баллончиках используется в пневматическом оружии.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Читайте также:  Эхо импульсный метод ультразвукового контроля

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки приточной вентиляции. Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

Углекислый газ в организме человека

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед гипоксии – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых исследований, уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически снижается работоспособность, мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш эксперимент в школе показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от окислительного стресса, который разрушает клетки нашего организма.