Схемы включения коллекторных двигателей

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:

  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:

  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:

  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:

  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:

  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Читайте также:  Нихромовая нить для чего нужна

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:

  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:

  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:

  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:

  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z – суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.

Кто разбирал из нас бытовые потребители электроэнергии как:

и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.

Читайте также:  Какой клей держит высокую температуру

В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы — в переключателе рис.4.

В этом примере, в зависимости от переключения позиции, будет изменяться направление вращения ротора электродвигателя, работа осуществляется с постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя, можно воспользоваться симисторным регулятором скорости вращения. Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению, — учитывается подключаемая нагрузка мощность потребителя электрической энергии.

Мощность потребителя, как наглядно видно из формулы рис.5, это произведение силы тока и напряжения. Для чего вообще необходимо проводить преварительные вычисления? Нагрузка, как известно нам, подключается через автомат защитного отключения. Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки рис.6.

симисторный регулятор скорости вращения электродвигателя

В кратце, чтобы представить — что из себя представляет симисторный регулятор, опять-же нужно вспомнить основы электроники . Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя рис.7.

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается рис.8, то-есть, выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления. Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

электронный модуль управления стиральной машины индезит

Подключение коллекторного двигателя — через реостат

В этом схематическом изображении рис.9 показано подключение нагрузки к выводным клеммам генератора через реостат. Нагрузкой здесь является электрическая лампа накаливания. Реостат в электрической схеме состоит в последовательном соединении, нагрузка лампочка соединена в схеме параллельно. Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель , работающий от источников электрической энергии, таких как:

либо от внешнего источника энергии, то-есть, от электрической сети. При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы рис.10.

Электрическая схема представляет из себя схему универсального коллекторного двигателя , где двигатель может работать как от переменного так и от постоянного тока.

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

Приведенный пример по электрическим наждакам, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд.

Остается пожелать Вам успешного проведения ремонта для различных видов бытовой техники.

Статью писал технически не граматный дебил, схема бесколекторного двигателя а описание колекторного и наоборот.

Здравствуйте электрик. Какие схемы Вы подразумеваете с названиями: «безколлекторный и коллекторный двигатели»? По схемам дается пояснение подключения обмоток коллекторного двигателя. Представляться нужно не электриком, а указывать свое имя. У меня, к примеру, имеется имя, отчество и фамилия — Виктор Георгиевич Повага. Проживаю в Сибири, работаю по договору с Яндекс.Директ.
В следующий раз, если от Вас поступит подобное письмецо, я обращусь в интернет-компании для Вашего розыска и затем, — перед судом будете доказывать «кто я такой».
Всего Вам доброго «электрик».

Виктор Георгиевич ! Большое спасибо за полезную статью.

Здравствуйте. Я электрике ничего не понимаю, но мне нужно подключить электромотор постоянного тока ИП-22, в обычную сеть

Здравствуйте. В своей практике я не встречал такой тип электродвигателя ИП-22. Не пойму Вас о чем здесь идет речь — о пожарном извещателе ИП-22 или о электродвигателе? Укажите техническую характеристику на ваш электродвигатель и страну-производитель, чтобы я смог сориентироваться по вашему вопросу.

Добрый день, Виктор! Подскажите будет ли регулировать скорость вращения коллекторного двигателя УЛ-062-УХЛ4 симисторный преобразователь без снижения момента на валу? С этим вопросом справляются частотные преобразователи, но применение их для управления данной моделью двигателя не допустимы.

Читайте также:  Электросамокат своими руками видео

Приветствую Валентин. Скоростью вращения универсального коллекторного двигателя можно управлять симисторным регулятором мощности. Симисторный преобразователь можно понимать как симисторный стабилизатор напряжения.

Боюсь обидеть автора, но по моему, действительно с названиями типов двигателя путаница. Коллекторный и однофазный асинхронный — два разных типа двигателей. Конденсатор в коллекторном двигателе если и присутствует, то как не обязательный, в принципе, элемент. Чаще всего, иногда в сочетании с дросселями, для защиты сети от создаваемых двигателем помех (фильтр). Сам двигатель без конденсатора будет работать, можно лишь поспорить об эффекте искрогашения. Поэтому называть коллекторный двигатель конденсаторным — вводить в заблуждение. В асинхронном однофазном двигателе конденсатор служит для сдвига ФАЗЫ в пусковой обмотке. Без него — сдвига фазы, ротор действительно не начнет вращаться. После раскрутки до оборотов, близких к номинальным, двигатель будет работать и без пусковой обмотки, но с существенно меньшим вращающим моментом. Сдвига фазы можно достичь и другими путями — с помощью индуктивности или активной нагрузки. Вот тогда он и не будет асинхронным двигателем с КОНДЕНСАТОРНЫМ пуском (в этом конкретно случае).

Боюсь обидеть автора, но с названиями электродвигателей в самом деле путаница. В коллекторном электродвигателе конденсатор не является необходимым элементом. В цепи питания коллекторного электродвигателя может стоять конденсатор, часто в сочетании с индуктивностями, но это для защиты сети от помех, создаваемых коллектором двигателя (фильтр). Для работы двигателя он не обязателен. Можно поспорить только по поводу необходимости его для искрогашения. Поэтому называть коллекторный электродвигатель конденсаторным – не правильно. В асинхронном «однофазном» двигателе конденсатор в цепи пусковой обмотки служит для сдвига фазы в ней. И тоже это только вариант, правда, наиболее распространенный. Сдвига фазы можно достичь включением в цепь пусковой обмотки индуктивности или активного сопротивления. Так что уместнее говорить о конденсаторном пуске асинхронного электродвигателя в однофазной сети. Двигатель при этом правильнее назвать двухфазным. Одна фаза из сети, вторая искусственно сдвинутая. После пуска при достижении двигателем оборотов, близких к номинальным, пусковую обмотку можно отключить, двигатель будет работать, однако вращающий момент его будет существенно меньше.

Здравствуйте. Здесь я в общем-то поторопился высказать свое мнение, назвав коллекторный двигатель конденсаторным. Приятно было пообщаться с вами. С прошедшими праздниками вас.

Подскажите как подключить двигатель ул-062 к сети 220

Здравствуйте. Я не нашел схему на данный электродвигатель. Если верить той информации, которую мне удалось найти в интернете, то подключение двигателя (УЛ-062) выглядит следующим образом: к выводам контактов (на клеммной колодке) О1Я2 и С1Ш2 подключается переменное напряжение 220 Вольт, на другие два вывода контактов устанавливается перемычка (отрезок провода). Перед подключением, рекомендую проверить работу электродвигателя малым напряжением.

На клемной колодке 6 выводов, бывает и 8. Что куда подсоединять

Благодаря своим компактным размерам, коллекторный двигатель получил широкое распространение в конструкциях ручного электроинструмента. Он успешно применяется взамен конденсаторного однофазного асинхронного двигателя в стиральных машинах. Массовое применение коллекторных двигателей обусловлено их высокой мощностью, простотой в управлении и обслуживании. Независимо от внешних различий и типов креплений, все они имеют одинаковый принцип действия.

Устройство и принцип работы

Прежде всего, это однофазный электродвигатель, где осуществляется последовательное возбуждение обмоток. Для его работы может использоваться переменный или постоянный ток. По этой причине, коллекторный электродвигатель считается универсальным.

Большинство таких электродвигателей имеют в своей конструкции основные элементы в виде статора вместе с обмоткой возбуждения, а также ротора и двух щеток в качестве скользящего контакта. Большая роль во всей конструкции отводится тахогенератору. Его магнитный ротор закрепляется в торце роторного вала, а фиксация катушки осуществляется с помощью стопорного кольца или крышки.

Все конструктивные элементы электродвигателя объединены в общей конструкции. Их соединяют две алюминиевые крышки, непосредственно образующие корпус двигателя. Для вывода контактов, присутствующих во всех элементах используется клеммная колодка, позволяющая легко включать их в общую электрическую схему. Для работы ременной передачи на роторный вал запрессовывается шкив.

Подключение и управление

В основе работы данного вида двигателей лежат взаимодействующие магнитные поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.

Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.

Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет симистор, подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.