Схемы преобразователей напряжения на 34063

9zip.ru Радиотехника, электроника и схемы своими руками Понижающий преобразователь на MC34063 для мобильного телефона

Подзаряжать аккумулятор мобильного телефона приходится в среднем один раз в неделю. Если Вы читаете наши обзоры мобильных телефонов, то, возможно, уже выбрали для себя экономичную модель, которая держит заряд по нескольку недель.

Со временем свойства аккумулятора мобильного телефона ухудшаются, и заряжать его приходится всё чаще. Особенно это ощущается на старых телефонах, которые жалко выбросить, но покупать новый аккумулятор нецелесообразно. Кроме того, у старых телефонов часто выходит из строя контроллер заряда и заряжать их приходится только при помощи лягушки.

Одно из решений для подобных телефонов – питание от ёмкого свинцового гелевого аккумулятора (например, восстановленного от UPS). Разумеется, телефон с таким аккумулятором уже не является мобильным. Он может лежать на полочке и использоваться по мере надобности.

Задача преобразователя – понизить напряжение аккумулятора (11-12 вольт) до напряжения, необходимого для питания телефона – 3.6 вольт. Преобразователь должен обладать высоким КПД, чтобы эффективно использовать энергию, запасённую в аккумуляторе. Линейные стабилизаторы здесь нежелательны по той причине, что часть энергии переводят в тепло.

Вашему вниманию предлагается импульсный преобразователь, который имеет миниатюрные размеры (плата – 3×3 см, а при использовании smd-компонентов – ещё меньше) и не нагреватся совсем.


В преобразователе используется известная микросхема MC34063. Параметры стабилизатора можно легко рассчитать на требуемые значения выходного напряжения и тока. Поэтому на основе этого преобразователя легко построить, например, автомобильную зарядку для телефона или КПК.

Схема стабилизатора – стандартная step-down (понижающая) из даташита на MC34063:


Для удобства приводим онлайн-калькулятор параметров для данной схемы. Задав нужные значения напряжений и тока, Вы легко посчитаете номиналы деталей.

Онлайн-калькулятор MC34063
Входное напряжение В
Выходное напряжение В
Макс. ток нагрузки мА
Напряжение пульсаций мВ
Частота преобразования кГц
Для ввода десятичных значений используйте
точку вместо запятой, например: 3.6
Здесь будет результат вычисления

Обратите внимание, что чем больше частота преобразования, тем меньшие значения индуктивности дросселя и ёмкости конденсатора потребуются. Параметр IL – значение тока, на который должен быть рассчитан дроссель, а L – минимальное значение его индуктивности (т.е меньше нельзя, можно больше).

Печатная плата может быть, например, такой, как на рисунке. В ней возможна как установка рассчитанных резисторов для получения конкретного напряжения, так и установка подстроечного резистора для регулировки. Конденсатор на входе преобразователя – в SMD исполнении, устанавливается со стороны печатных дорожек. Конденсатор на выходе может быть как SMD, так и в выводном исполнении. Необходимо, чтобы он был Low ESR, т.к. частота преобразователя высокая. Обратите внимание, что у электролитических конденсаторов в SMD исполнении полоса на корпусе означает плюсовой вывод, а не минусовой.

Собранный преобразователь подключается выходом непосредственно к клеммам аккумулятора мобильного телефона, а входом – к гелевому аккумулятору. Зарядки такого аккумулятора хватит на длительный срок работы телефона.

Читайте также:  Изготовление адаптер адаптер для мотоблока


Данную схему также можно использовать и для иных целей, например, для питания светодиодов и т.п.

Когда перед разработчиком какого либо устройства, встает вопрос «Как получить нужное напряжение?», то обычно ответ прост — линейный стабилизатор. Их несомненный плюс это маленькая стоимость и минимальная обвязка. Но кроме этих достоинств, у них есть недостаток — сильный нагрев. Очень много драгоценной энергии, линейные стабилизаторы превращают в тепло. Поэтому использование таких стабилизаторов, в устройствах с батарейным питанием не желательно. Более экономичными являются DC-DC преобразователи. О них то и пойдёт речь.

О принципах работы уже всё сказано до меня, так что я не буду на этом останавливаться. Скажу лишь что такие преобразователи бывают Step-UP (повышающие) и Step-Down (понижающие). Меня конечно же заинтересовали последние. Что получилось вы можете видеть на рисунке выше. Схемы преобразователей были мной заботливо перерисованы из даташита 🙂 Начнем с Step-Down преобразователя:

Как видите ничего хитрого. Резисторы R3 и R2 образуют делитель с которого снимается напряжение и поступает на ногу обратной связи микросхемы MC34063. Соответственно изменяя номиналы этих резисторов можно менять напряжение на выходе преобразователя. Резистор R1 служит для того чтоб защитить микросхему от выхода из строя в случае короткого замыкания. Если впаять вместо него перемычку то защита будет отключена и схема может испустить волшебный дымок на котором работает вся электроника. 🙂 Чем больше сопротивление этого резистора, тем меньший ток сможет отдать преобразователь. При его сопротивлении 0.3 ома, ток не превысит пол ампера. Кстати все эти резисторы может рассчитать моя программа. Дроссель я брал готовый но ни кто не запрещает его намотать самому. Главное чтоб он был на нужный ток. Диод так же любой Шотки и так же на нужный ток. В крайнем случае можно запараллелить два маломощных диода. Напряжения конденсаторов не указаны на схеме, их нужно выбирать исходя из входного и выходного напряжения. Лучше брать с двойным запасом.
Step-UP преобразователь имеет в своей схеме незначительные отличия:

Требования к деталям, те же что и для Step-Down. Что касается качества получаемого напряжения на выходе,то оно достаточно стабильно и пульсации как говорят — небольшие. (сам на счёт пульсаций не могу сказать так как нет у меня осциллографа пока). Вопросы, предложения в комментарии.

DC-DC преобразователь на MC34063: 131 комментарий

Кстати собрал все таки схему — все работает. Правда 1 все таки испортил (где-то закоротило и она просто взорвалась) впаял защиту 0.47 Ом Думаю пока что для опытов хватит ) Ещё раз спасибо !

Блок питания описанный в статье «Блок питания на TOP222Y» выглядит по схеме гораздо сложнее. В чем прикол?) Если они оба DC/DC.

DC-DC преобразователь на MC34063 нельзя воткнуть в розетку!

Добрый день. Я делаю понижающий преобразователь на 12 В. Если на входе микрухи напряжение приблизится к указанному или даже станет меньше, что получим на выходе? Будет ли выходное напряжение повторять входное?

Читайте также:  Использование торцовочной пилы для резки металла

Если на вход подать менее 12 вольт то на выходе 12 вольт точно не получиться. Скорее всего напряжение на выходе будет примерно таким же как на входе.

Добрый день.
Подскажите, почему на графической схеме 4 конденсатора, а на фотографии платы и на распечатке их 5, 2 их которых одинаковой ёмкости 0,1мкФ, один в вх.цепи, другой в исх?

Установил для эксперимента. пятый можно не ставить, просто собирай по схеме

Спасибо.
Еще вопрос: делаю зарядку для телефона, на выходе 5В и 1А. Меня смущает, что программа ругается «Switch peak current 2000mA exceeds 1500mA limit!» (как я понял, на возможный пиковый ток в 2А). Не сдохнет ли микросхема?

А хрен знает 🙂 Думаю что ей будет жарковато.

Эх, не тянет она нормально 1А при 5В.
Стабильный максимум 500мА при 5В.

Спасибо за схемку и программу.
Дешёвые детали и работает стабильно.
Очень помогла компенсировать падение напряжения
120 метров 2*1,5мм2, с 12в до 8в 250мА. поднял опять до 12в

Подскажите а какой мощности должны быть резюки? по моим подсчетам 5Вт получается))
а у вас на фото резюки явно меньшей мощности

Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы. Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.). Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.

Основные технические параметры MC34063.

Входное напряжение ………. от 3 до 40 Вольт

Выходное напряжение ………. от 1.25 до 38 Вольт

Максимальный ток на выходе ………. 1.5 Ампер

Максимальная частота ………. 100кГц

Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.

Схема повышающего DC-DC преобразователя на MC34063.

Опишу работу простыми словами. В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

Читайте также:  Алюминизированная сталь что это такое

Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

Конденсатор C2 задает частоту преобразования.

Элементы.

Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

Расчет преобразователя на MC34063 под другое напряжение и ток.

Расчет займет не более одной минуты. Для этого необходимо воспользоваться On-line калькулятором расчета параметров МС34063. Помимо номиналов программа высчитает пиковый выходной ток, и в случае его превышения выдаст сообщение.

Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).

Пару слов…

Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.

При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.

Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.

Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ