По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия. Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации. Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы.
Определение основных параметров
Перед началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника. Далее нужно сделать правильный выбор сечения, влияющего на показатели выходного тока и мощность устройства.
Следует учитывать и тот фактор, что при небольшом количестве витков, первичная обмотка будет нагреваться. Точно такая же ситуация возникает, когда мощность потребителей, включаемых во вторичную обмотку, превышает мощность, отдаваемую трансформатором. В результате перегрева снижается надежность устройства, иногда может произойти воспламенение трансформатора.
В качестве примера приводится таблица, с помощью которой можно рассчитать тороидальный трансформатор, работающий при частоте сети 50 Гц.
Сердечники устройств могут быть изготовлены из холоднокатаной стали марок Э310-330, толщиной от 0,35 до 0,5 мм. Может применяться и обычная сталь, марок Э340-360, где толщина ленты будет в пределах от 0,05 до 0,1 мм.
Условные обозначения в таблице соответствуют:
- Pг – габаритная мощность трансформатора;
- ω1 – количество витков на 1 вольт для стали Э310, Э320, Э330;
- ω2 – количество витков на 1 вольт для стали Э340, Э350, Э360;
- S – сечение сердечника;
- ∆ – значение допустимой плотности тока в обмотках;
- ŋ – КПД трансформатора.
При наматывании тороидальной катушки используется только наружная и межобмоточная изоляция. Несмотря на ровную укладку обмоточных проводов, толщина намотки по внутреннему диаметру обязательно увеличивается вследствие разницы между наружным и внутренним диаметром сердечника. Поэтому рекомендуется использовать проводники, изоляция которых обладает повышенной механической и электрической прочностью, например, марки ПЭЛШО и ПЭШО, а в некоторых случаях – ПЭВ-2. Для наружной и межобмоточной изоляции чаще всего применяется батистовая лента, лакоткань ЛШСС, толщиной 0,06-0,12 мм, а также триацетатная или фторопластовая пленка, толщиной 0,01-0,02 мм.
Формулы для расчета тороидального трансформатора
Основными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р = Uн х Iн = 24 х 1,8 = 43,2 Вт.
Далее определяется габаритная мощность трансформаторного устройства по формуле:
Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность.
Следующим этапом будет расчет площади сечения сердечника по формуле:
Выбор размеров сердечника осуществляется следующим образом:
Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм 2 , которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:
Если в качестве примера взять сердечник, изготовленный из стали Э320, то в этом случае количество витков на один вольт будет определяться по формуле:
Теперь необходимо определить количество витков в первичной и вторичной обмотках:
Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению. В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах. В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом: W1-2=133 х 1,03=137 витков.
Диаметры обмоточных проводов можно определить по формуле:
Здесь I1 является током первичной обмотки, определяемый по собственной формуле: I1=1,1 (P2/Uc)=1,1 (48/220)=0,24A
Диаметр провода выбирается по ближайшему значению в сторону увеличения, что будет составлять 0,31 мм.
Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства.
Разделы сайта
DirectAdvert NEWS
Друзья сайта
Рекламный блок
Рекламный блок
Рекламный блок
Статистика
Простой расчет тороидальных трансформаторов.
Тороидальные трансформаторы обладают рядом преимуществ по сравнению с трансформаторами на стержневых и броневых сердечниках из Ш-образных пластин. Тороиды обладают меньшими размерами, меньшим весом и при этом гораздо большим КПД. Но мы в этой статье не будем залазить в дебри, раз уж вы заинтересовались этой статьей, значит вас интересует вопрос: как по простому рассчитать тороидальный трансформатор. Вообще существует много литературы по этой теме, но, как правило, расчеты там настолько заумные и громоздкие, что желания разбираться в этих формулах большого не возникает. Хотя стоит отметить, что рассчитав тороид по полному расчету, вы получите наиболее точные данные, и в то же время упрощенного расчета в большинстве случаев для радиолюбителя оказывается вполне достаточно. Давайте рассмотрим упрощенную методику расчета тороидального трансформатора по таблице , этот метод расчета существует уже очень давно, и многие радиолюбители успешно им пользуются. По этой таблице можно легко рассчитать тор мощностью до 120 ватт. Трансформаторы, не вошедшие в таблицу, рассчитываются также как трансформаторы на Ш-образном железе.
Эту таблицу применяют для расчета трансформаторов с частотой сети 50 Гц, сердечники которых выполнены из:
● холоднокатаная сталь марок Э310, Э320, Э330, толщина ленты 0,35-0,5 мм;
● сталь марок Э340, Э350, Э360, толщина ленты 0,05- 0,1 мм.
Pг ……….габаритная мощность трансформатора;
ω1………число витков на вольт для стали Э310, Э320, Э330;
ω2………число витков на вольт для стали Э340, Э350, Э360;
S…………площадь сечения сердечника;
∆…………допустимая плотность тока в обмотках;
ŋ…………КПД трансформатора.
При намотке тороида допускается применение лишь межобмоточной и наружной изоляции: и хоть межслоевая изоляция и позволит добиваться наиболее ровной укладки провода обмоток, из-за разного наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличится толщина намотки по внутреннему диаметру.
Для намотки тороида нужно применять обмоточные провода, имеющие повышенную механическую и электрическую прочность изоляции. Можно использовать провода ПЭЛШО, ПЭШО, ну и на крайний случай ПЭВ-2. Межобмоточная и наружная изоляции могут быть выполнены батистовой лентой, триацетатной пленкой, лакотканью ЛШСС (0,06-0,12 мм толщины) или фторопластовой пленкой ПЭТФВ 0,01-0,02 мм толщины.
Пример расчета трансформатора:
Дано:
● напряжение питающей сети Uc=220 В,
● выходное напряжение Uн=24 В,
● ток нагрузки Iн=1,8 А.
1. Определяем мощность вторичной обмотки:
2. Определяем габаритную мощность трансформатора:
Величину к.п.д. и другие необходимые для расчета данные выбираем по таблице из нужной графы ряда габаритных мощностей.
3. Находим площадь сечения сердечника:
4. Подбираем размеры сердечника Dc, dc и hc:
Ближайший стандартный тип сердечника — ОЛ50/80-40, площадь сечения которого равна S=6 см2 (не менее расчетной).
5. При определении внутреннего диаметра сердечника должно быть выполнено условие:
dc должно быть больше или равно dc`
6. Предположим, что выбран сердечник из стали Э320, тогда число витков на вольт определяем по формуле:
7. Находим расчетные числа витков первичной и вторичной обмоток :
Так как в тороидах магнитный поток рассеивания весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше, чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обмотки необходимо увеличить количество ее витков лишь на 3%.
8. Определяем диаметры проводов обмоток:
где I1 — ток первичной обмотки трансформатора, определяемый из формулы:
Выбираем ближайший диаметр провода в сторону увеличения (0,31 мм);
Трансформаторы, расчитанные с помощью приведенной выше таблицы, после изготовления подвергались испытаниям под постоянной максимальной нагрузкой в течение нескольких часов и показали отличные результаты.
При расчете транформатора часто возникает проблема с исходными данными. Давайте рассмотрим пример расчета, когда первичные данные отсутствуют.
Самый простой способ:
Подготавливаем сердечник для намотки первичной обмотки: обрабатываем острые края, накладываем изолирующие прокладки (в моем случае на тороидальный сердечник я сделал накладки из картона). Теперь наматываем 50 витков провода диаметром
0.5 мм. Для измерений нам понадобится амперметр с пределом измерения примерно до 2х ампер, вольтметр переменного напряжения и ЛАТР. Если нет ЛАТРа, то его можно заменить на генератор, умеющий выдавать частоту 50 Гц и усилитель мощности ЗЧ. Собираем схему как на рисунке:
Наша цель — снять зависимость тока холостого хода первичной обмотки от приложенного напряжения. Эта кривая вначале линейна, а затем начинает резко расти, когда сердечник входит в насыщение. Для этого подаем на обмотку трансформатора напряжение начиная от 0В с шагом 0.5В, записываем при этом показания амперметра. Затем с помощью MS Excel или на бумаге строим зависимость Ixx от приложенного напряжения U11. В результате получится вот такая зависимость:
Теперь определим конец линейного участка, в нашем случае это точка (14,5В; 260 мА).
Число витков на вольт нужно расчитать с запасом 20%:
Таким образом для первичной обмотки требуется :
Допустим требуемое напряжение вторичной обмотки = 35В. Число витков вторичной обмотки равно :
Далее по известным токам Ixx и Iвт.обмотки находим требуемый диаметр провода.
Примечание:
Этим методом можно расчитать любые виды сердечников, в том числе и ферритовые.
Сначала расчитаем площадь окна и площадь сечения тора:
Габаритная мощность определится как:
Расчитаем габаритную мощность для тора с размерами D=80 mm, d=50 mm, h=40 mm (ОЛ-50/80 — 40).
Sокна = 19,63 кв.см, Sсеч = 6 кв.см, Pгаб = 117,8 Вт.
Перед конструкторами радиоэлектронной аппаратуры часто ставится задача создания таких устройств, которые отличались бы небольшими размерами и минимальным весом.
Практика показала, что лучше всего применять силовые трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к.п.д. Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов,
В связи с тем, что полный расчет тороидального трансформатора по сечению сердечника сложен, приводим таблицу, с помощью которой радиолюбителю будет легче произвести расчет тороидального трансформатора мощностью до 120 вт.
Точность расчета вполне достаточна для любительских целей.
Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.
Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э310, Э320, Э380 с толщиной ленты 0,35—0, 5 мм. и стали Э340, Э350, Э360 с толщиной ленты 0*05—0,1 мм. при частоте питающей сети 50 Гц.
При намотке трансформаторов допустимо применять лишь меж обмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.
Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01— 0,02 мм. лакоткань ЛШСС толщиной 0,06—0,12 мм. или батистовая лента.
Дано: напряжение питающей сети Uc = 220 в,
выходное напряжение Uн = 24 в,
- Расчет мощности тороидального трансформатора. Определяют мощность вторичной обмотки P = Uн*Iн = 24*1,8 = 43,2 вт.
- определяют габаритную мощность трансформатора Pг = p/η = 43,2 / 0,92 = 48 вт. Величину к. п. д. и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.
- Определяют площадь сечения сердечника тороидальной катушки
Pг Вт. | W1 | W2 | Sсм 2 | Δ А/мм 2 | η |
до 10 | 41/S | 38/S | √Pг | 4,5 | 0,8 |
10-30 | 36/S | 32/S | √Pг/1,1 | 4,0 | 0,9 |
30-50 | 33,3/S | 29/S | √Pг/1,2 | 3,5 | 0,92 |
50-120 | 32/S | 28/S | √Pг/1,25 | 3,0 | 0,95 |
Примечание. Рг, — габаритная мощность трансформатора, w1, — число витков на вольт для стали Э310, Э320, Э330, w2— число витков на вольт для стали Э340, Э359, ЭЗ60, S — площадь сечения сердечника см 2 , Δ — допустимая плотность тока в обмотках, η — к. п. д. трансформатора.
4. Подбирают размеры сердечника Dc, dc и hc
Ближайший стандартный тип сердечника — ОЛ 50/80-40, площадь сечения которого равна 6 см 2 (не менее расчетной).
5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc ≥ d`c,то есть 5 ≥3,8.
6. Предположим, что выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле;
w1 = 33,3 / S = 33,3 / 6 = 5,55 витков / вольт.
7. Находят расчетные числа витков первичной и вторичной обмоток W1-1 =w1* Uc = 5,55 * 220 = 1221 виток. W1-2= w2 * Uc = 5,55*24 = 133 витка.
Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше* чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обметки необходимо увеличить количество ее витков лишь на 3%.
W1-2 = 133 * 1,03 = 137 витков.
8. Определяют диаметры проводов обмоток d1 = 1,13 * √(I1 / Δ) , где I1 ток первичной обмотки трансформатора, определяемый иэ формулы:
Выбирают ближайший диаметр провода в сторону увеличения (0*31 мм)
Трансформаторы, рассчитанные с помощью приводимой таблицы, после изготовления подвергались испытаниям под постоянной максимальной нагрузкой в течение нескольких часов и показали хорошие результаты.
Видео: Расчет тороидального трансформатора
Видео посвящено вопросу расчета тороидального трансформатора. При расчете используется классическая методика определения количества витков для первичной и вторичной катушек трансформатора.