Расчет передаточного числа зубчатой передачи калькулятор

Передаточное число – это отношение числа зубьев ведомой шестерни к числу зубьев ведущей. Т.е. если одна (ведомая) шестерня имеет 60 зубьев, а другая (ведущая) – 30, то передаточное число данной пары равно 2 (60/30).

Передаточное число важно учитывать, когда необходимо заставить двигаться механизм с определенной скоростью: чем больше передаточное число, тем медленнее вращается ведомая шестерня и наоборот.
Так же экспериментируя с передаточным числом зубчатой передачи, можно увеличить точность движения механизма: при передаточном большом числе, ведомая шестерня провернется на маленький угол при значительном повороте ведущей. Это к тому же иногда позволяет убрать паразитный люфт.

При большом количестве различных шестерней в наборах Lego Mindstorms и их возможного взаимного положения, расчет передаточного числа становится нетривиальной задачей. В таком случае при расчете может помочь данный калькулятор.

В верхней части калькулятора можно задать ведущую и ведомую шестерни (программа сама предложит только реально возможные варианты). Сразу после этого выдастся результат. Например,

The total final gear ratio is 1:36
— передаточное число — отношение 1 к 36
The speed is decreased 36 times.
— скорость уменьшается в 36 раз
The torque is increased 36 times.
— крутящий момент увеличивается в 36 раз
The follower gear rotates 0.027778 time per each revolution of the driver gear.
— ведомая шестерня поворачивается 0.028 раз за каждый полный поворот ведущей шестерни

Можно также задать определенный сервомотор и получить характеристики движения для заданной зубчатой передачи. Например,

The theoretical output speed will be 2.3 RPM at 7V and 3.3 RPM at 9V.
— теоретическая скорость будет 2.3 поворота в минуту на 7 вольтах и 3.3 поворота в минуту на 9 вольтах
The theoretical output torque will be 601.2 N.cm.
— теоретический крутящий момент будет 601 Ньютон на сантиметр.

В конце страницы можно воспользоваться автоматическим подсказчиком, который поможет определить какие шестерни можно вообще испольовать при заданном взаимном расположении их друг от друга.

Программа для подбора сменных зубчатых колес

ПОРЯДОК ПОЛЬЗОВАНИЯ ТАБЛИЦАМИ / ПРОГРАММОЙ

Для подбора сменных колес искомое передаточное отношение выражается в виде десятичной дроби с числом знаков соответственно требуемой точности. В «Основных таблицах» для подбора зубчатых колес (стр. 16—400) находим колонку с заголовком, содержащим первые три цифры передаточного отношения; по остальным цифрам находим строку, на которой указаны числа зубьев ведущих и ведомых колес.

Требуется подобрать сменные колеса гитары для передаточного отношения 0,2475586. Сначала находим колонку с заголовком 0,247—0000, а под ним ближайшее значение к последующим десятичным знакам искомого передаточного отношения (5586). В таблице находим число 5595, соответствующее набору сменных колес (23*43) : (47*85). Окончательно получаем:

i = (23*43)/(47*85) = 0,2475595. (1)

Относительная погрешность сравнительно с заданным передаточным отношением :

δ = (0,2475595 — 0,2475586) : 0,247 = 0,0000037.

Строго подчеркиваем: во избежание влияния возможной опечатки нужно обязательно проверить полученное соотношение (1) на калькуляторе. В тех случаях, когда передаточное отношение больше единицы, необходимо выразить его обратную величину в виде десятичной дроби, по найденному значению в таблицах отыскать числа зубьев ведущих и ведомых сменных колес и поменять ведущие и ведомые колеса местами.

Требуется подобрать сменные колеса гитары для передаточного отношения i = 1,602225. Находим обратную величину 1:i = 0,6241327. В таблицах для ближайшего значения 0,6241218 находим набор сменных колес: (41*65) : (61*70). Учитывая, что решение найдено для обратной величины передаточного отношения, меняем местами ведущие и ведомые колеса:

i = (61*70)/(41*65) = 1,602251

Относительная погрешность подбора

δ = (1,602251 — 1,602225) : 1,602 = 0,000016.

Обычно требуется подбирать колеса для передаточных отношений, выраженных с точностью до шестого, пятого, а в отдельных случаях и до четвертого десятичного знака. Тогда семизначные числа, приведенные в таблицах, можно округлять с точностью до соответствующего десятичного знака. Если имеющийся комплект колес отличается от нормального (см. стр. 15), то, например, при настройке цепей дифференциала или обкатки можно выбрать подходящую комбинацию из ряда соседних значений с погрешностью, удовлетворяющей условиям, изложенным на стр. 7—9. При этом некоторые числа зубьев можно заменять. Так, если число зубьев комплекта не свыше 80, то

(58*65)/(59*95) = (58*13)/(59*19) = (58*52)/(59*76)

«пятковую» комбинацию предварительно преобразуют так:

а затем, по полученным множителям подбирают числа зубьев.

ОПРЕДЕЛЕНИЕ ДОПУСТИМОЙ ПОГРЕШНОСТИ НАСТРОЙКИ

Очень важно различать абсолютную и относительную погрешности настройки. Абсолютной погрешностью называют разность между полученным и требуемым передаточными отношениями. Например, требуется иметь передаточное число i = 0,62546, а получено i = 0,62542; абсолютная погрешность будет 0,00004. Относительной погрешностью называют отношение абсолютной погрешности к требуемому передаточному числу. В нашем случае относительная погрешность

δ = 0.00004/0,62546 = 0,000065

Следует подчеркнуть необходимость суждения о точности настройки по относительной погрешности.

Общее правило.

Если какая-либо величина А, получаемая настройкой через данную кинематическую цепь, пропорциональна передаточному отношению i, то при относительной погрешности настройки δ абсолютная погрешность будет Аδ.

Например, если относительная погрешность передаточного отношения δ =0,0001, то при нарезании винта с шагом t отклонение в шаге, зависящее от настройки, будет 0,0001 * t. Та же относительная погрешность при настройке дифференциала зубофрезерного станка даст дополнительное вращение заготовки не на требуемую дугу L, а на дугу с отклонением 0,0001 * L.

Если указан допуск на изделие, то абсолютное отклонение размера вследствие неточности настройки должно составлять только некоторую долю этого допуска. В случае более сложной зависимости какой-либо величины от передаточного отношения полезно прибегать к замене фактических отклонений их дифференциалами.

Настройка цепи дифференциала при обработке винтовых изделий.

Типичной является следующая формула:

где с — постоянная цепи;

β — угол наклона винтовой линии;

n — число заходов фрезы.

Продифференцировав обе части равенства, получим абсолютную погрешность di передаточного отношения

тогда допустимая относительная погрешность настройки

Если допустимое отклонение угла винтовой линии dβ выразить не в радианах, а в минутах, то получим

Например, если угол наклона винтовой линии изделия β = 18°, а допустимое отклонение в направлении зуба dβ = 4" = 0′,067, то допустимая относительная погрешность настройки

δ = 0,067/3440*tg18 = 0,00006

Наоборот, зная относительную погрешность взятого передаточного отношения, можно по формуле (3) определить допущенную погрешность в угле винтовой линии в минутах. При установлении допустимой относительной погрешности можно в подобных случаях пользоваться тригонометрическими таблицами. Так, в формуле (2) передаточное отношение пропорционально sin β. По тригонометрическим таблицам для взятого числового примера видно, что sin 18° = 0,30902, а разность синусов на 1′ составляет 0,00028. Следовательно, относительная погрешность на 1′ составляет 0,00028 : 0,30902 = 0,0009. Допустимое отклонение винтовой линии — 0,067, поэтому допустимая погрешность передаточного отношения 0,0009*0,067 = 0,00006, такая же, как и при расчете по формуле (3). Когда оба сопряженных колеса нарезаются на одном станке и по одной настройке цепи дифференциала, то погрешности в направлении линий зубьев допускаются значительно большие, так как у обоих колес отклонения одинаковы и незначительно влияют только на боковой зазор при зацеплении сопряженных колес.

Настройка цепи обкатки при обработке конических колес.

В этом случае формулы настройки выглядят так:

i = p*sinφ/z*cosу или i = z/p*sinφ

где z — число зубьев заготовки;

р — постоянная цепи обкатки;

φ — угол начального конуса;

у — угол ножки зуба.

Пропорциональным передаточному отношению оказывается радиус основной окружности. Исходя из этого, можно установить допустимую относительную погрешность настройки

где α — угол зацепления;

Δα — допустимое отклонение угла зацепления в минутах.

Настройка при обработке винтовых изделий.

δ = Δt/t или δ = ΔL/1000

где Δt — отклонение в шаге винта за счет настройки;

ΔL — накопленная погрешность в мм на 1000 мм длины резьбы.

Величина Δt дает абсолютную ошибку шага, а величина ΔL характеризует по существу относительную погрешность.

Настройка с учетом деформации винтов после обработки.

При нарезании метчиков с учетом усадки стали после последующей термической обработки или с учетом деформации винта вследствие нагревания при механической обработке, процент усадки или расширения непосредственно указывает на необходимое относительное отклонение в передаточном отношении сравнительно с тем, какое получилось бы без учета этих факторов. В этом случае относительное отклонение передаточного отношения в плюс или минус является уже не ошибкой, а преднамеренным отклонением.

Настройка делительных цепей. Типичная формула настройки

где р — постоянная;

z — число зубьев или других делений на один оборот заготовки.

Нормальный комплект из 35 колес обеспечивает абсолютно точную настройку до 100 делений, так как в числах зубьев колес содержатся все простые множители до 100. В такой настройке погрешность вообще недопустима, так как она равна:

где Δl — отклонение линии зуба на ширине заготовки В в мм;

пD — длина начальной окружности или соответствующей другой окружности изделия в мм;

s — подача вдоль оси заготовки на один ее оборот в мм.

Только в грубых случаях эта погрешность может не играть роли.

Настройка зубофрезерных станков при отсутствии требуемых множителей в числах зубьев сменных колес.

В таких случаях (например, при z = 127) можно настроить гитару деления приближенно на дробное число зубьев, а необходимую поправку произвести, используя дифференциал [5]. Обычно формулы настройки гитар деления, подач и дифференциала выглядят так:

x = pa/z ; y = ks ; φ = c*sinβ/ma

Здесь р, k, с — соответственно постоянные коэффициенты этих цепей; а — число заходов фрезы (обычно а = 1).

Настраиваем указанные гитары согласно формулам

x = paA/Az+-1 ; y = ks ; φ’ = пc/asA

где z — число зубьев обрабатываемого колеса;

А — произвольное целое число, выбираемое так, чтобы числитель и знаменатель передаточного отношения разлагались на множители, подходящие для подбора сменных колес.

Знак (+) или (—) также выбирается произвольно, что облегчает разложение на множители. При работе правой фрезой, если выбран знак (+), промежуточные колеса на гитарах ставятся так, как это делают согласно руководству по работе на данном станке для правовинтовой заготовки; если выбран знак (—), промежуточные колеса ставят, как для левовинтовой заготовки; при работе левой фрезой — наоборот.

Желательно выбирать А в пределах

(1/2)*(пc/as) b+(20. 25); b + d > с+(20. 25) (11)

Эти условия ставятся для предотвращения упора сменных колес в соответствующие валы или детали крепления; числовое слагаемое зависит от конструкции данной гитары. Однако вторая из комбинаций (10) может быть принята только в том случае, когда колесо Z2 устанавливается на первом ведущем валу и если передача z2/z3 замедляющая или не содержит большого ускорения. Желательно, чтобы z2/z3 1) желательно так разбивать i = i1i2 чтобы сомножители были возможно более близкими один к другому и равномернее распределялось повышение скорости. При этом лучше, если i1 > i2

МИНИМАЛЬНЫЕ КОМПЛЕКТЫ СМЕННЫХ КОЛЕС

Состав комплектов сменных колес в зависимости от области применения приведен в табл. 2. В случае особо точных настроек — см. стр. 403.

Числа зубьев минимальных комплектов сменных колес для различных случаев настроек

Для настройки делительных головок можно использовать таблицы, прилагаемые заводом. Сложнее, но можно выбирать подходящие пятковые комбинации из приводимых в данной книге «Основных таблиц для подбора зубчатых колес».

Описание программы

Программа написана в Exsel, очень проста в пользовании и в освоении. Расчет производится по методике Чернаского.
1. Исходные данные:
1.1. Допускаемое контактное напряжение, Мпа;
1.2. Принятое передаточное отношение, U;
1.3. Вращающий момент на валу шестерни t1, кН*мм;
1.4. Вращающий момент на валу колеса t2, кН*мм;
1.5. Коэффициент;
1.6. Коэффициент ширины венца по межосевому расстоянию.

2. Стандартный окружной модуль, мм:
2.1. допустимое мин;
2.2. Допустимое макс;
2.3 Принимаемое по ГОСТ.

3. Расчет количество зубьев:
3.1. Принятое передаточное отношение, u;
3.2. Принятое межосевое расстояние, мм;
3.3. Принятый модуль зацепления;
3.4. Количество зубьев шестерни (принятое);
3.5. Количество зубьев колеса (принятое).

4. Расчет диаметров колес;
4.1. Расчет делительных диаметров шестерни и колеса, мм;
4.2. Расчет диаметров вершин зубьев, мм.

5. Расчет прочих параметров:
5.1. Расчет ширины шестерни и колеса, мм;
5.2. Окружная скорость шестерни.

6. Проверка контактных напряжений;
6.1. Расчет контактных напряжений, Мпа;
6.2. Сравнение с допустимым контактным напряжением.

7. Силы в зацеплении;
7.1. Расчет окружной силы, Н;
7.2. Расчет радиальной силы, Н;
7.3. Эквивалентное число зубьев;

8. Допустимое напряжение изгиба:
8.1. Выбор материала шестерни и колеса;
8.2. Расчет допустимого напряжения

9. Проверка по напряжениям изгиба;
9.1. Расчет напряжения изгиба шестерни и колеса;
9.2. Выполнения условий.

>

Краткая характеристика прямозубой цилиндрической передачи

Прямозубая цилиндрическая передача является самой распространенной механической передачей с непосредственным контактом. Прямозубая передача менее вынослива, чем другие подобные и менее долговечна. В такой передаче при работе нагружается только один зуб, а также создается вибрация при работе механизма. За счет этого использовать такую передачу при больших скоростях невозможно и нецелесообразно. Срок службы прямозубой цилиндрической передачи гораздо ниже, чем других зубчатых передач (косозубых, шевронные, криволинейные и т.д.). Основными преимуществами такой передачи являются легкость изготовления и отсутствие осевой силы в опорах, что снижает сложность опор редуктора, а соответственно, снижает стоимость самого редуктора.

Пишите в любое время:

©Проект-Технарь, 2010-2019
Все работы, чертежи и связанные с ними материалы принадлежат их авторам и предоставляются только в ознакомительных целях.

Оцените статью