Потенциальная энергия деформированной пружины формула

Весь мир в твоих руках — все будет так, как ты захочешь

Адрес: г. НовороссийскТелефон: Номер телефонаПочта: kalinelena@yandex.ru

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Тестирование

Потенциальная энергия упруго деформированного тела

Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

Потенциальная энергия упруго деформированного тела зависит от взаимного положения частей тела относительно друг друга, например витков пружины. Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины.

Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем потенциальную энергию растянутой пружины.

Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.

— потенциальная энергия тела

— коэффициент жесткости (или просто жесткость) пружины

— абсолютная деформация (удлинение или сжатие пружины)

A — работа, которую совершает растянутая пружина

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. Груз, прикрепленный к пружине

Пусть изначально система находится в состоянии равновесия, то есть пружина не деформированная, и груз покоится. Выведем эту систему из равновесия и сделаем так, чтобы пружина стала в сжатом состоянии (см. рис. 2).

Рис. 2. Система выведена из равновесия

Если направить ось ОХ так, как показано на рис. 2, и расположить начало координат там, где до начала сжатия был расположен центр груза, то проекцию возникающей силы упругости на нашу ось ОХ можно записать в виде:

,

где k – жесткость пружины, величина деформации пружины. Если предоставить пружину самой себе, то груз будет смещаться влево, при этом сила упругости будет совершать работу. Предположим, что левый конец пружины вместе с грузом переместился из положения А в положение В (см. рис. 3).

Рис. 3. Перемещение груза

В этом положении деформация пружины равна уже не

Рис. 4. Зависимость силы упругости от координаты движения

Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).

Рис. 5. Площадь фигуры

Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.

Рис. 6. Площадь большой фигуры

Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:

К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:

,

где

Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.

Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.

Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.

Потенциальная энергия упруго деформированного тела

Здесь поступим аналогичным образом. Величину, равную половине произведения жесткости пружины на квадрат ее удлинения, назовем потенциальной энергией деформированной пружины. Мы имеем право это сделать, поскольку изменение данной величины, взятой с обратным знаком, равно работе силы упругости. Теперь формулу для вычисления работы силы упругости можно озвучить по-другому: работа силы упругости равна изменению потенциальной энергии упруго деформированного тела (пружины), взятому с обратным знаком:

Работа силы упругости, как и работа силы тяжести, зависит только от начального и конечного положения центра груза – это означает, что работа силы упругости не зависит от формы траектории груза, а в том случае, когда траектория является замкнутой, работа силы упругости равна 0.

Если за начало отсчета принять положение груза при недеформированной пружине, а после принять, что удлинение пружины равно (см. рис. 7), то формула для работы силы упругости приобретает вид:

Рис. 7. Вычисление работы силы упругости

Но Динамометр, рассчитанный на 40 Н, имеет пружину жесткостью 500 . Какую работу нужно совершить, чтобы растянуть пружину от середины шкалы до последнего деления?

В условии нам не дано значений удлинения пружины динамометра, поэтому введем его сами. Пусть удлинение пружины на середине шкалы равно (см. рис. 8).

Рис. 8. Удлинение шкалы

Следовательно, когда пружина растянута с максимальной силой, то удлинение равно . Воспользуемся для последнего случая законом Гука, поскольку мы знаем значение максимальной силы и жесткости пружины.

Следовательно, нам необходимо рассчитать работу при удлинении от 4 см до 8 см. Воспользуемся формулой, полученной на уроке:

Работа равна разности между значениями потенциальной энергии пружины, растянутой до полного удлинения и до полвины.

Ответ:.

Теперь мы с вами можем рассчитывать потенциальную энергию тела, поднятого над землей, и потенциальную энергию тела, которое испытывает упругую деформацию.

Список литературы

1. Соколович Ю.А., Богданова Г.С Физика: справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

2. Перышкин А.В. Физика: учебник 10 класс. – Издательство: Дрофа.: 2010. – 192 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт fizika.in (Источник)

2. Интернет-сайт Единой коллекции цифровых образовательных ресурсов (Источник)

3. Интернет-сайт объединения учителей физики Санкт-Петербурга (Источник)

Домашнее задание

1. Что такое сила упругости?

2. Напишите формулу, по которой можно найти работу силы упругости.

3. Что такое потенциальная энергия тела?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Пусть идеальная пружина длиной R в недеформированном состоя- нии закреплена с одного конца, а на другом находится тело. Пружи- на не имеет массы и подчиняется закону Гука. В отсутствие деформа- ции ее незакрепленный конец может находиться в любой точке по- верхности сферы радиусом R. Если же пружина деформирована, то положение ее незакрепленного конца при растяжении располагает- ся вне сферической поверхности, и внутри — при сжатии. При даль- нейшем рассмотрении считается, что на тело действует только упру- гая сила, и сила тяжести тела не учитывается.

Деформация пружины может быть осуществлена только при на- личии внешней силы. Приложение внешней силы к незакрепленно- му концу пружины (телу) сопровождается возникновением противо-

F = —k�, (3.39)

положно направленной силы �упругости

r

где k – коэффициент упругости (жесткости) пружины; � — мера ее де-

формации, вектор удлинения пружины относительно ее недеформи- рованного состояния (вектор, соединяющий незакрепленный конец пружины в недеформированном и деформированном состояниях).

При любом положении незакрепленного конца пружины (тела) в пространстве сила упругости при ее растяжении направлена к точке закрепления пружины, а при сжатии — в противоположную сторону, но всегда вдоль прямой, соединяющей тело и точку закрепления. Со- гласно соотношению (3.39) сила упругости зависит от расстояния ме- жду незакрепленным концом пружины в недеформированном и де- формированном состояниях, т. е. F = F(r), и для вычисления работы упругой силы применима формула (3.33). Следовательно, сила упру- гости — центральная, ее работа не зависит от формы траектории пе- ремещения в пространстве незакрепленного конца пружины (тела). Таким образом, при нахождении тела в любой точке пространства, кроме поверхности сферы радиусом R с центром в точке закрепления пружины (R — длина недеформированной пружины), на него дейст- вует центральная упругая сила. Вместо введенной выше модели тела на упругой пружине можно просто рассматривать тело в центральном поле (3.39) и использовать для интерпретации результаты, получен-

ные при рассмотрении тела в гравитационном поле Земли.

Действительно, подставляя упругую силу (3.38) в формулу (3.33), найдем работу этой силы при переходе тела из одного (r1) положе- ния в другое (r2)

и представим последнее соотношение в виде разности значений

U (r) = + C

для различных значений r1 и r2 положения тела в упругом поле. C — произвольная константа. Функция U = U(r) — потенциальная энер- гия пружины и тела (не пружины, как обычно считается, а именно пружины + тела!).

Если пружина сжимается, то r2 0, U(r1) > U(r2). В этом случае упругая сила совершает положительную работу. Пружина пе- реходит из более деформированного состояния, которое характери- зуется значением функции U(r1), в менее деформированное, с мень- шим значением U(r2) этой функции.

Если же пружина растягивается, то r2 > r1, A12

Отметим, что «наинизшая» конфигурация для силы тяжести не может быть определена так же естественно, как для пружины. Для пружины и вообще для упругих сил «наинизшей» конфигурацией яв- ляется состояние, в котором деформация отсутствует. Для поднято- го тела «наинизшим» положением может быть любой уровень: пола, земли и т. д. Уровень, относительно которого отсчитывается потенци- альная энергия, если тело поднято на некоторую высоту, может быть выбран совершенно условно. Представляет интерес не абсолютная величина потенциальной энергии, а лишь ее изменение относитель- но некоторого уровня.

Всякий раз, когда силы, действующие в системе, совершают по- ложительную работу, происходят такие изменения конфигурации, при которых потенциальная энергия системы уменьшается. Наобо- рот, если силы, действующие в системе, совершают отрицательную работу, то конфигурация изменяется так, что потенциальная энер- гия возрастает. Для того чтобы силы, действующие в системе, со- вершали отрицательную работу, точки приложения сил должны пе- ремещаться в направлении, противоположном действию сил. Этого можно достичь прикладывая к телам системы внешние силы. Тогда внешние силы совершают положительную работу, увеличивая потен- циальную энергию системы.

Равновесное состояние системы

В системе, предоставленной действию только внутренних сил, происходят изменения ее конфигурации, сопровождающиеся умень- шением потенциальной энергии. Состояние системы, в котором сум- ма действующих на тело сил равна нулю, представляет собой поло- жение равновесия. В положении равновесия ускорение тела, соглас- но второму закону Ньютона, тоже равно нулю. Если к тому же тело неподвижно, т. е. его скорость равна нулю, то оно будет находиться в таком состоянии как угодно долго.

Рассмотрим вопрос о поведении потенциальной энергии вблизи положения равновесия для одномерного случая. Пусть какому-либо состоянию равновесия соответствуют значения координаты x = x1 и потенциальной энергии U = U(x1). При перемещении тела на рас- стояние dx, действующая на него внутренняя сила F в направлении x1 совершает работу

Работа осуществляется за счет уменьшения потенциальной энер- гии системы, т. е.

dA = —dU = FdE ® — dU = F .

Так как в положении равновесия (x = x1) действующая на тело сила

F должна быть равна нулю, то

т. е. в положении равновесия потенциальная энергия достигает либо минимума либо максимума (точка перегиба не рассматривается, не- смотря на то, что в ней также выполняется условие (3.41)).

При отклонении тела от положения равновесия возникает внут- ренняя сила F, направленная к равновесному положению и препятст- вующая значительному удалению тела от него. При отклонении тела от этого равновесного состояния сила совершает отрицательную ра- боту и потенциальная энергия возрастает. Положению равновесия со- ответствует минимум потенциальной энергии.

Если же возникающая сила F направлена от положения равно- весия, то при удалении тела от состояния, определенного условием (3.41), она совершает положительную работу и потенциальная энергия системы уменьшается. Значит, положению равновесия соответствует максимум потенциальной энергии, и тело не может сколько-нибудь длительное время находиться в состоянии, близком к состоянию рав- новесия. В первом случае состояние равновесия оказывается устойчи- вым, во втором — неустойчивым.

Таким образом, устойчивому состоянию равновесия соответст- вует минимум, а неустойчивому — максимум потенциальной энергии. Так как максимум или минимум функции в точке экстремума опре- деляется знаком второй производной в этой точке, то условиями ус- тойчивого и неустойчивого равновесия системы являются следую- щие соотношения:

1 > 0 — равновесие устойчиво, (3.42)

Оцените статью
ТехПорт