Плавный пуск для электродвигателя своими руками

Содержание
  1. Общие сведения
  2. Принцип действия
  3. Применение в болгарке
  4. Самодельные варианты
  5. Простейшая схема
  6. Плавный пуск на микросхеме
  7. Устройство плавного пуска электродвигателя
  8. Принцип действия
  9. Устройство плавного пуска своими руками
  10. Устройство и схема плавного пуска асинхронного электродвигателя
  11. Необходимость плавного запуска
  12. Прямой запуск
  13. Подключение «звезда-треугольник»
  14. Старт через автотрансформатор
  15. Устройства плавного пуска
  16. Типы устройств плавного старта
  17. Софт-стартеры
  18. Устройства плавного пуска асинхронных двигателей
  19. Электродвигатели и нагрузки — проблема?
  20. Для чего нужен плавный пуск?
  21. Видео: Плавный пуск, регулировка и защита колектор. двигателя
  22. Варианты систем плавного пуска электродвигателей
  23. Система «звезда-треугольник»
  24. Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником
  25. Электронная система плавного пуска электродвигателя
  26. Однофазная схема пуска
  27. Двухфазная схема пуска
  28. Трехфазная схема пуска
  29. Плавный пуск своими руками

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска электродвигателя

Поскольку в последнее время очень широко распространилось применение асинхронного двигателя. в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта. буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Устройство и схема плавного пуска асинхронного электродвигателя

Асинхронные двигатели (машины) получили большую популярность. Причин этому несколько: простота и надежность эксплуатации, приемлемая цена, широкий спектр применений.

Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.

  • Необходимость плавного запуска
  • Прямой запуск
  • Подключение «звезда-треугольник»
  • Старт через автотрансформатор
  • Устройства плавного пуска
  • Типы устройств плавного старта
  • Софт-стартеры

Необходимость плавного запуска

Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.

Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.

Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.

Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Подключение «звезда-треугольник»

Одним из основных способов запуска машины является электросхема «звезда-треугольник». Такой старт возможен, для двигателей, у которых все начала и концы обмоток выведены.

Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют “Экономитель энергии Electricity Saving Box”. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Первоначально коммутация с сетью происходит по схеме «звезда». Контакторы К1 и К3 замкнуты. Затем, через определенное время, обмотки переключаются автоматически на схему «треугольник». Контакты К3 размыкаются, а контакты К2, наоборот, замыкаются. Реле времени в электросхеме служит для управления их переключением. На нем выставляется время разгона двигателя. При этом пусковые токи существенно снижаются.

Такой способ эффективен, но применяется он не всегда.

Старт через автотрансформатор

Этот способ применяется с использованием в электросхеме автотрансформатора, который соединен с машиной последовательно. Он служит для того, чтобы запуск произошел при пониженном на 50 — 80% от номинального напряжении. Вследствие этого пусковой ток и вращающий пусковой момент уменьшатся. Временной интервал переключения от пониженного напряжения к полному корректируется.

Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.

Устройства плавного пуска

В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.

В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.

Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.

Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.

Типы устройств плавного старта

Их можно разделить на четыре категории.

  • Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
  • Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
  • Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
  • Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.

Софт-стартеры

Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.

С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.

Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.

Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.

Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.

  • Первое — это обязательный учет тока асинхронной машины. Поэтому выбор софт-стартера необходимо осуществлять учитывая полный ток нагрузки, не превышающий тока предельной нагрузки самого устройства;
  • Второе — максимальное число стартов в час. Как правило, оно ограничено софт-стартером. Число запусков в час самой машины не должно превышать этот параметр;
  • Третье — это напряжение самой электрической сети. Оно должно соответствовать паспортному значению устройства. Несоответствие может привести к его поломке.

Обязательно прочтите эти материалы:

Устройства плавного пуска асинхронных двигателей

Известно, что пусковой ток асинхронного двигателя с короткозамкнутым ротором в 5-7 раз превышает его номинальный ток. Физически, причина обусловлена низким сопротивлении обмоток электрической машины в предпусковой момент. При приложении номинального напряжения к малому сопротивлению, ток имеет большое значение:

В идеальном случае если R стремится к нулю, то I стремится к бесконечности. В реалии же, ток достигает 5-7 кратного значения. В процессе разгона двигателя, сопротивление обмоток повышается до номинального уровня, а ток соответственно снижается. Передача энергии из сети в момент запуска электродвигателя:

Из выражения (2) можно сделать вывод, что параметры U, I, t могут быть изменены, таким образом, что передаваемая из сети энергия Е останется неизменной. Это выражение справедливо только для приводов с небольшой нагрузкой на валу, например привод вентилятора.

Использование устройств плавного пуска двигателей(УПП). При использовании УПП для ограничения пусковых токов выражение (1) будет действовать на выходе устройства, а выражение (2) на его входе. В основу регулирования напряжения в современных софтстартерах (другое название УПП ) лежит свойство тиристоров ограниченно пропускать электрический ток, в зависимости от напряжения, приложенного к управляющему электроду.

Для работы тиристоров в сетях переменного напряжения, их включают встречно в параллельных ветвях, а управляющее напряжение подается на общий электрод. Такое устройство называется симистор, устанавливается он в каждом проводе трехфазной системы.

При протекании пусковых токов через полупроводниковые элементы на них выделяется значительное количество тепла. Для отвода тепла применяют радиаторы, значительно увеличивающие вес, габариты и стоимость устройства.

Другое решение проблемы – это использование схем с подключением шунтирующего контактора. После завершения пускового процесса, его контакты замыкаются, создавая параллельную цепь с меньшим сопротивлением. чем у полупроводников. Ток протекает по пути наименьшего сопротивления, а симисторы в это время остывают.

Современные УПП собраны на микропроцессорной базе, позволяющей существенно расширить функциональность, по сравнению с аналоговыми устройствами плавного пуска. Регулирование напряжения на зажимах электродвигателя осуществляется в функции тока. Это означает, что величина управляющего напряжения симисторов строго дозируется программой, в зависимости от величины тока, протекающей в обмотках.

Регулирование в функции тока позволяет избежать перегруза питающей сети, а значит, появляется возможность экономить на сечении питающего кабеля, мощности трансформатора и габаритах распределительного устройства.

Функциональные возможности УПП во многом совпадают с частотными преобразователями, также используемыми в электроприводе, однако стоимость последних в разы превышает стоимость УПП. Современные устройства могут иметь дополнительные функции, как то: защита от перегруза, от перекоса фаз, неправильного чередования фаз, защита от малых токов (при кавитации в насосах), и пр.

Возможность регулирования напряжения позволяет тормозить двигатель, запускать его при повышенной нагрузке, экономить электроэнергию при установившемся режиме при небольшой нагрузке. Основным достоинством УПП является их невысокая стоимость в сравнении с “частотниками”.

– необходимость согласовывать включение УПП с защитными коммутационными аппаратами – само по себе устройство не защищено от токов коротких замыканий, протекающих через него; – при увеличении пускового времени с помощью УПП есть необходимость применения в цепи специальных автоматов с отстройкой теплового расцепителя по времени; – снижение пускового напряжения неизбежно ведет к снижению пускового момента, УПП применяют только в приводах с небольшой нагрузкой на валу; – влияние наличия полупроводниковых элементов на качество напряжения в сети.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Оцените статью
ТехПорт