Печь для цементации стали

Для цементации, закалки и низкого отпуска небольших партий шестерен, валов, колец и т.п. в среде защитного газа применяют камерные универсальные печи, объединенные в единую конструкцию.

Камерная универсальная электропечь СНЦ_5.10. 3,2/10 изображена на рис. 6

Технические характеристики печи:

Мощность печи – 80 кВт;

Масса единовременной загрузки – 400 кг;

Масса садки нетто – 300 кг;

Расход газа – 12-15 м /ч;

Размеры садки 500х1000х320 мм;

Масса агрегата 13 т;

Рисунок 5 – Механизированная электропечь:

1 – нагревательная камера; 2 – закалочная камера; 3 – подъемный столик; 4 – вентилятор; 5 – нагреватели; 6 – цепной механизм для передвижения поддона с деталями

Электропечь состоит из камеры нагрева, тамбура с закалочным масляным баков в едином каркасе, щитов управления и механизма загрузки и разгрузки. В тамбуре печи и в камере нагрева установлены вентиляторы для обеспечения циркуляции атмосферы печи.

Нагревательную и закалочную камеру можно заполнять защитной атмосферой, предохраняющей закаливаемые детали от окисления и обезуглероживания. С помощью цепного механизма 6 корзину с деталями по направляющим роликам перемещают в нагревательную камеру 1. После нагревания и выдержки тем же цепным механизмом корзину перемещают в закалочную камеру 2 и вместе со столиком 3 погружают в закалочную жидкость (масло). После охлаждения столик поднимается пневмомеханизмом, и корзину выгружается из печи. Детали нагреваются в результате излучения электронагревателей 5 и конвективного теплообмена. Вентиляторы 4, установленные в нагревательной камере и в закалочном баке, предназначены для интенсификации теплообмена и равномерного нагрева и охлаждения деталей.

В данной механизированой электропечи проводят весь цикл термической обработки деталей, например, закалку и отпуск, а также цементацию.

Для очистки стальных поковок, у которых не допускается упрочнение поверхности, применяют мокрую пескоструйную очистку (рис. 5). Поковки очищают внутри камеры на поворотном столе загрузочной тележки пистолетом, из которого под действием сжатого воздуха выбрасывается смесь песка и воды (пульпа). Для удаления водяной пыли вверху камеры предусмотрены отверстия для вытяжной трубы вентиляционной системы. Загрузочная тележка состоит из платформы, станины, двух пар колес и поворотного стола с катками. Передвижение тележки и вращение стола производится вручную. Катки и колеса установлены на шариковых подшипниках и надежно защищены от попадания воды и песка.

Рисунок 6 – Гидропескоструйная установка

1 – камера; 2 – дверца с резиновой занавеской; 3 – ручка управления клапаном; 4 – фонарь; 5 – пульт управления; в-поворотный стол; 7 – пистолет; 8 – смеситель; 9 – настил из металлических листов; 10 – лестница; 11 – отстойник; 12 – насос для пульпы; 13 – трубопровод; 14 – привод смесителя; 15 – вытяжная труба.

Термическая обработка после цементации. Для получения заданного комплекса механических свойств после цементации необходима дополнительная термическая обработка деталей.

В зависимости от условий работы, а также от выбранной для изготовления детали стали режим упрочняющей термической обработки может быть различен. Для тяжелонагруженных трущихся деталей машин, испытывающих в условиях работы динамическое нагружение, в результате термической обработки нужно получить не только высокую поверхностную твердость, но и высокую прочность (например, для зубчатых колес-высокую прочность на изгиб) и высокую ударную вязкость. Для обеспечения указанных свойств требуется получить мелкое зерно как на поверхности детали, так и в сердцевине. В таких ответственных случаях цементованные детали подвергают сложной термической обработке, состоящей из двух последовательно проводимых закалок и низкого отпуска.

При первой закалке деталь нагревают до температуры на 30-50 °С выше температуры Ас з цементируемой стали. При таком нагреве во всем объеме детали установится аустенитное состояние (рис. 7). Нагрев до температур, лишь немного превышающих Ас3, вызывает перекристаллизацию сердцевины детали с образованием мелкого аустенитного зерна, что обеспечит мелкозернистость продуктов распада. При температуре t3, как видно на рис. 7, весь диффузионный слой переходит в аустенитное состояние, поэтому, чтобы предотвратить выделение цементита, проводят закалку.

Читайте также:  Объем бака стиральной машины

При второй закалке деталь нагревают до температуры t3]I с превышением на 30-50 °С температуры Act (рис. 7). В процессе нагрева мартенсит, полученный в результате первой закалки, отпускается, что сопровождается образованием глобулярных карбидов, которые в определенном количестве сохраняются после неполной закалки в поверхностной заэвтектоидной части слоя, увеличивая его твердость. Вторая закалка обеспечивает также мелкое зерно в науглероженном слое.

Окончательной операцией термической обработки является низкий отпуск при 160-200 °С, уменьшающий остаточные напряжения и не снижающий твердость стали (рис. 7).

Рисунок 7_Режим термической обработки ответственных деталей машин после цементации (схема): / – цементация; II – двойная закалка; /// – низкий отпуск

После двойной закалки и низкого отпуска поверхностный слой приобретает структуру отпущенного мартенсита с включениями глобулярных карбидов. Структура сердцевины детали зависит от легированности стали. Так как цементировалась легированная сталь, то в зависимости от количества легирующих элементов сердцевина может приобрести структуру бейнита или низкоуглеродистого мартенсита. Во всех случаях из-за низкого содержания углерода будет обеспечена достаточно высокая ударная вязкость.

Отдел продаж: +7 (495) 775-71-65 / +7 (925) 223-71-65

Шахтная печь цементации СШЦМ 8.12/9,5МВ

Шахтная электропечь СШЦМ 8.12/9,5МВ предназначена для проведения процессов цементации и нитроцементации с автоматическим регулированием печной атмосферы.

Описание конструкции шахтной электропечи цементации:

Металлоконструкции каркаса рабочей камеры электропечи в усиленном промышленном исполнении изготавливаются из профильного и листового проката. Каркас выполнен в виде цилиндра.

Крышка печи печного блока поднимается при помощи электромеханического привода, а при выключении электроэнергии – гидравлическим домкратом (резервный подъемник), и отводится в сторону вручную.
Внутри рабочей камеры установлена защитная реторта из стали
В крышке печи установлен вентилятор, необходимый для создания равномерности температурного поля в рабочей камере печи. Вал вентилятора имеет сальниковое уплотнение с водяным охлаждением и возможностью подтяжки.
В крышке печи предусмотрено технологическое отверстие для подвески и выемки контрольных образцов для экспресс-анализа.
Вал вентилятора подвергнут упрочняющей химико- термической обработке, предохраняющей от задиров зону трения с сальником.
Корпус подшипников вала вентилятора установлен на высоте 100 мм от крышки печи.

Бортовой отсос имеет надежное крепление.
Конструкция отсоса учитывает конструктивные особенности печи: не мешает нормальной работе печи и не создает препятствия обслуживающему персоналу.
Объем удаляемого воздуха 7630 м3/ч.
Диаметр отводящего патрубка, подключаемого к вытяжной вентиляции Покупателя 630 мм.
Допустимая высота спектра вредности над бортовым отсосом 0,15 м.
Бортовой отсос выполнен в соответствии с СанПиН 2.2.4.548-96.
Конструкторская документация с деталировкой на изготовление бортового отсоса в бумажно и электронном виде (на диске или USB флеш- накопителе) передается с Оборудованием Покупателю

Футеровка рабочей камеры печи и крышки шахты выполняется из современных высокоэффективных волокнистых огнеупорных и теплоизоляционных материалов: керамоволокно, плиты ШВП- 350, плиты ПВП-280 и рулонный материал МКРР-130. Толщина теплоизоляции на стенах, крышке рабочей камеры – 300-350 мм.
Футеровка пода печи выполняется двухслойной. Нижний подовый слой выполняется из легковесного шамотного кирпича, верхний слой футеруется огнеупорным шамотным кирпичом.

Электронагреватели печи спирального типа из сплава Нихром расположены в фрезерованных пазах в боковых стенках шахты. Нагревательные элементы выполнены в соответствии с действующими правилами по безопасности.
Соединения электронагревателей и силовых кабелей монтируются на боковой стенке печи на клеммнике.
Электропечь по регулированию температуры в рабочем пространстве выполнена двухзонной.

  • Управление тепловым режимом печи

Управление тепловым режимом печи – тиристорное, на базе трехфазных тиристорных блоков и микропроцессорного терморегулятора "Термодат-19".

  • Система сбора и хранения информации

Терморегулятор «Термодат 19» имеет опцию архивирования, которая может быть использована для контроля и записи графика изменения температуры в рабочей камере по стационарной термопаре.
Информацию так же возможно переносить с терморегулятора на ПК при помощи USB носителя.
Имеется возможность подключения к ПК, поставляемому вместе с печью, и объединения в общую сеть с другими объектами.

Читайте также:  Контур заземления своими руками схемы чертежи

Управление печью осуществляется с пульта управления оператора на лицевой двери совмещенного щита (силовой и управления)

Предусмотрена система автоматического отключения питания нагревательных элементов при достижении максимальной эксплуатационной температуры материала, тем самым обеспечивая их защиту от «перегрева» и оплавления.

Цементация стали – это высокотемпературный процесс, сопровождающийся насыщением поверхности атомарным углеродом. В результате повышаются качественные характеристики верхнего слоя изделия, в частности крепость, что увеличивает стойкость к различным нагрузкам. Метод начал применяться еще с середины девятнадцатого века: сталь производили путем сквозной цементации железа.

По технологии обработки цементация схожа с азотированием, с одним отличием – вторая технология насыщает верхний слой азотом, придавая обработанным изделиям антикоррозийные свойства. Азотирование применяют при работе со сталью, содержащей такие элементы, как хром, алюминий, титан и другие. Это связано с тем, что соединения данных металлов отличаются прочностью и высокой устойчивостью к температурным воздействиям.

Существуют несколько способов цементации стали. Некоторые из них пригодны для применения в домашних условиях. Все это будет рассмотрено в данной статье.

Сущность и назначение процесса цементации

Цементация металла – одна из разновидностей химико-термической обработки поверхностей наряду с азотированием, цианированием и алитированием. Сущность и ее назначение заключаются в диффузионном насыщении поверхности заготовки атомами углерода. В результате повышаются следующие характеристики:

  • твердость;
  • прочность;
  • стойкость к механическим воздействиям.

Температуру цементации выбирают исходя из требуемой степени науглероживания заготовки. Она находится в диапазоне от 800 до 950 °C. Технологию применяют для обработки низкоуглеродистой или легированной стали. Это связано с тем, что внутренняя часть детали должна оставаться вязкой после закалки. Глубина насыщенного слоя может достигать 2,5 мм в зависимости от интенсивности воздействия.

Высокая температура необходима для активизации углерода, который играет ключевую роль в цементации. В этом случае он легко проникает в межкристаллическое пространство стали и усваивается там.

Технология отличается низкой скоростью взаимодействия стали с углеродом. Для получения слоя толщиной 0,1 мм требуется в среднем один час. Примечательно, что процесс имеет прямую зависимость: глубина цементации не влияет на время обработки.

Методы цементации металлов и сплавов

За долгую историю было разработано несколько способов. Современные технологии позволяют проводить процессы цементации в следующих условиях:

  • твердая среда;
  • газовая среда;
  • жидкая среда;
  • вакуум;
  • с применением специальной пасты;
  • цементация в электролите.

Вышеперечисленные методы отличаются технологией и глубиной насыщения. Рассмотрим их подробнее.

Цементация с использованием твердой среды

Для цементации стали по данной технологии используют специальные углеродсодержащие вещества, которые называются карбюризаторами.

Карбюризаторы способны отдавать углерод материалам, расположенным по соседству. Для этого необходима высокая температура.

Наибольшей популярностью пользуются следующие карбюризаторы:

  • березовый древесный уголь;
  • дубовый древесный уголь.

Иногда применяют их смесь. Для работы уголь дробится на фракции, размер которых не должен превышать 10 мм. После этого он смешивается с солью угольной кислоты из любого металла щелочной группы. Массовая доля угля в составе, как правило, достигает 88–90%. Перед применением смесь просеивают с целью удаления наиболее мелких фракций вроде пыли и крошек.

Существуют два способа приготовления рабочего состава:

  1. Сухой. В этом случае соль и уголь тщательно перемешивают. В противном случае результат будет некачественным: на поверхности будут видны необработанные участки стали.
  2. Мокрый. Уголь поливают водным соляным раствором, после чего высушивают. Уровень влажности рабочей смеси не должен превышать 6–7%.

Последний способ считают наиболее эффективным для качественной модификации стали.

Процесс насыщения поверхности углеродом выглядит следующим образом:

  1. Рабочую смесь насыпают в ящики, изготовленные из термостойкого материала. Форма и размеры зависят от типа обрабатываемых деталей.
  2. Объекты для цементации помещают в ящик. Угольная смесь должна быть равномерно распределена по внутренней поверхности.
  3. Во избежание утечек производят герметизацию емкости, обрабатывая закладную часть шамотной глиной.
  4. Ящик помещают в печь, которую прогревают до 700 °C.
  5. На данном этапе осуществляют визуальный контроль процесса: все нагреваемые элементы должны иметь ровный цвет без темных пятен на поверхности.
  6. Температуру в печи повышают до рабочего уровня: 800–950 °C. Начинается процесс активного освобождения углерода и его проникновения в межкристаллическую решетку стали.
  7. Время обработки зависит от требуемой глубины цементации стали.
Читайте также:  Чем отрезать плитку без сколов

Процесс цементации в газовой среде

Данная технология обработки стали применяется на крупных предприятиях при массовом производстве. При этом глубина проникновения углерода не превышает 2 мм. Рабочим веществом служат газы искусственного или природного происхождения с высоким содержанием углерода. Наибольшей популярностью пользуются газы, являющиеся побочными элементами распада нефтепродуктов.

Для получения газа используют керосин ввиду неустойчивости углерода в его составе. Часть газа подвергают модификации для увеличения глубины проникновения.

Как и в предыдущем способе, для обработки используют специальные, герметично закрытые печи.

Технология отличается длительным процессом обработки. Для получения насыщенного слоя стали глубиной 1,2 мм необходимо 15 часов при 900 °C. Для ускорения реакции необходимо повысить температуру.

Современные предприятия проводят обработку с применением горючих природных газов, которые поддерживают углеродный баланс внутри печи.

Проведение цементации в жидкой среде

Реакция происходит в насыщенном растворе карбонатных солей щелочных металлов, обладающих низкой температурой плавления. Процесс обработки выглядит следующим образом:

  1. Соляной раствор наливают в специальную емкость.
  2. В жидкость опускают детали.
  3. Раствор нагревают до рабочей температуры, которая составляет 850 °C.
  4. Заготовку выдерживают заданное время. Обычно оно не превышает 3 часов.

Достоинства данного метода – высокая скорость реакции и равномерное покрытие поверхности стали. Недостатком является глубина проникновения углерода – до 0,5 мм.

Цементация в вакууме

Передовая технология, которая отличается высокой скоростью проникновения углерода в сталь. Процесс обработки полностью автоматизирован: время подачи углерода, регулировка рабочего давления и скорость реакции контролируются программным обеспечением, которое установлено на всех компьютерах печи.

  1. Стальную заготовку помещают в камеру.
  2. Из корпуса выкачивают весь воздух, создавая вакуум.
  3. Печь нагревают до рабочей температуры.
  4. Деталь выдерживают определенное время.
  5. В камеру подают углеводородный газ под давлением.
  6. Под действием вакуума углерод активно внедряется в кристаллическую решетку.
  7. Науглероживание стали выполняют в несколько этапов в зависимости от требуемой глубины проникновения.
  8. В камеру подают инертный газ, охлаждая температуру.

Из достоинств необходимо выделить полное отсутствие кислорода, что повышает качество обработки.

Способы цементации пастами

Если модификация носит непостоянный характер, используют специальные пасты из сажи и угля древесного происхождения. Для получения глубокого проникновения требуется наносить толстый слой. После этого деталь помещают в индукционную печь. Для достижения результата требуется температура 1000–1050 °C.

В электролитическом растворе

Данный метод обработки стали имеет сходство с гальванизацией. Процесс проходит в растворе электролита, в котором под действием электричества образуются свободные атомы углерода. Температуру и напряжения устанавливают в зависимости от необходимой глубины проникновения.

Можно ли цементировать сталь в домашних условиях

В случае необходимости можно цементировать металл в домашних условиях. Как правило, для этих целей выбирают технологию обработки в твердой среде. Время насыщения может занимать несколько часов, поэтому основная сложность кустарных работ – поддержание заданной температуры на протяжении всего цикла.

Качество домашней обработки значительно ниже, чем в условиях промышленных установок. Кроме того, рентабельность работ может обеспечить только большое количество обрабатываемых деталей, что не всегда возможно.

Свойства металла после обработки

В результате насыщения углеродом твердость верхнего слоя может достигать 64 HRC. Интенсивное температурное воздействие изменяет структуру после цементации.

Для нивелирования этих свойств заготовку подвергают повторной обработке и закалке с последующими нормализацией или отпуском в зависимости от типа стали.

Во время закалки благодаря образованию феррита происходит измельчение зерновой структуры.

Во избежание поверхностных деформаций на завершающем этапе проводят низкотемпературный отпуск стали.

Цементацию стали применяют для получения высокопрочной поверхности, которая способна выдерживать значительные нагрузки, что увеличивает срок эксплуатации. А вы когда-нибудь пробовали обрабатывать детали по данной технологии в домашних условиях? Расскажите о качестве полученного продукта в комментариях.