Отличие железа от стали

Сталь. Виды и марки стали. Их применение.

Сталь — это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.

Наиболее общая характеристика — по химическому составу сталь различают:

углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si — кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.

легированную сталь — добавляются легирующие элементы: азот, бор, алюминий, углерод, фосфор, кобальт, кремний, ванадий, медь, молибден, марганец, титан, цирконий, хром, вольфрам, никель, ниобий.

По способу производства и содержанию примесей сталь различается:

сталь обыкновенного качества ( углерода менее 0,6%) — соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.

качественная сталь ( углеродистая или легированная ) — ГОСТ 1577, содержание углерода обозначается в сотых долях % — 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.

Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.

Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)

Стали 60 — стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.

высококачественная — сложный химический состав с пониженным содержанием фосфора и серы — по ГОСТу 19281.

Также сталь делится по применению :

а) строительная сталь — углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.

Ст0-3 — для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)

Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.

Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).

б) конструкционная сталь — ГОСТ 1050

Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.

Ст20 — малонагруженные детали, такие как валики, копиры, упоры,

Ст35 — испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),

Ст45 (ст40Х) — требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)

Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.

в) инструментальная сталь — применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.

У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.

г) легированная сталь — универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 — 1,5%, то оно указывается цифрой после соответствующей буквы.

низколегированная сталь — где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.

среднелегированная (2,5 -10%),

высоколегированная (от 10 до 50%)

Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.

Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.

18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.

д) сталь особого назначения — сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.

На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:

спокойная сталь (ст3сп) — полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,

полуспокойная сталь (ст3пс) — по характеристикам качества схожа со спокойной сталью,

кипящая сталь (08кп) — неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.

В зависимости от нормируемых характеристик , сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)

Например, категория 1 — химический состав не нормируемый, категория 3 — нормируется ударная вязкость при температуре +20. Для марки ст0 не нормируется ни химический состав, ни предел текучести.

Марка стали С245 — Ст3пс5

Марка стали С255 — Ст3сп5

Марка стали С235 — Ст3кп2

Марка стали С345 — 09Г2С

© 2001-2019 АО Металлоторг, Все права защищены
металлопрокат, катанка, оцинковка, листы хк, гк, листы оцинкованные холоднокатаные, профильные трубы
Металлоторг — продажа металлопроката

18.01.2018 18:12

Сталь и чугун – это одни из наиболее популярных видов литейных материалов, применяющихся в промышленности. По своим свойствам они довольно схожи, понять, чем отличается сталь от чугуна, можно разными способами. Некоторые из методов можно использовать только в заводских условиях с помощью высокоточного оборудования, другие подходят для применения в быту.

Основное отличие чугуна от стали заключается в составе металлов. Сталь представляет собой сплав железа (45%) с углеродом (не более 2%) и легирующими примесями, в качестве которых могут выступать такие вещества, как никель, молибден либо другие. Этот металл отличается высокой прочностью, пластичностью, легкостью обработки. В состав чугуна также входит железо с углеродом, но последнего должно быть от 2% и больше. В качестве легирующих добавок обычно выступает кремний, фосфор, марганец или другие компоненты.

Различия физико-химических характеристик

Основная разница в качествах этих металлов заключается в следующем:

  • Твердость стали выше, чем у чугуна.
  • Масса стальных изделий меньше, при этом материал легче плавится.
  • Определенные виды обработки доступны только для стальных заготовок (ковка, сварка), в то время как чугунные изделия изготавливаются только литьевым методом.
  • Теплопроводность чугунных изделий ниже, чем у стальных аналогов.
  • Чугун не нуждается в обязательной закалке.

Можно ли отличить чугун от стали визуально?

Если речь идет о фрагментах или заготовках, обработка которых не нанесет вреда, можно посмотреть на визуальные отличия металлов. На сломе изделия из чугуна появляется темно-серый матовый оттенок, стальная поверхность более светлая, имеет глянцевую текстуру. Внешний вид зависит от содержания углеродистых компонентов, различить их можно по типу трещин: на высокоуглеродистых стальных поверхностях они похожи на дефект в виде раскола, на изделии из низкоуглеродистого сплава железа трещины выглядят как разрыв пластичного типа.

Читайте также:  Как называется сварочный аппарат который варит проволокой

На вопрос о том, можно ли отличить готовые изделия по оттенку или текстуре, можно дать однозначный ответ: предметы из стали более светлые, практически всегда имеют глянцевый оттенок, изделия из чугуна – темные и матовые.

Как отличить чугун от стали?

Чтобы отличать эти металлы друг от друга, можно использовать следующие способы:

  • Сверление. Для этого понадобится взять насадку с маленьким диаметром и, выбрав на заготовке ровный участок, высверлить небольшое отверстие. Если при обработке материала образуется тонкая стружка, которая формируется в витую полоску длиной больше используемого сверла, имеет цвета побежалости по всей длине и достаточно хорошо гнется, заготовка сделана из стали. Чугунный сплав менее пластичен, он практически не образует вьюна, а стружка крошится от малейшего механического воздействия: ее легко растереть до состояния порошка, поскольку материал более хрупкий;
  • Шлифование. Для этого используется углошлифовальная машинка, для обработки выбирают участок, на который не воздействуют силы трения, контакт с другими металлическими поверхностями или деталями, в противном случае после шлифовки изделие может быть непригодным к дальнейшему использованию. В процессе обработки требуется следить за цветом искры и ее формой. Если сплав чугунный, искра будет короткой, звездочка будет иметь красноватый тон, а если деталь сделана из стали, искр вылетает больше, они имеют увеличенный размер и продолговатую форму. Сами искры имеют желтый или белый цвет. Исключением являются стальные сплавы с повышенным содержанием углерода, которые дают короткую багровую искру с укороченным треком и малой звездочкой.

Методы механического воздействия могут применяться в бытовых условиях, когда нужно определить, чугун или сталь перед вами, без применения специального оборудования. В лаборатории может использоваться современная техника, с помощью которой проводится спектральный или микроскопический анализ свойств металлов. Эти методы обеспечивают результат высокой точности, но используются преимущественно в промышленных целях, на производстве и в научно-технической отрасли ввиду сложности и дороговизны оборудования.

Железо — хороший металл: пластичный, хорошо обрабатывается резанием, в сплавах с углеродом и другими элементами очень прочный. И дешёвый: все реакции ядерного распада тянутся к железу, так что железа на Земле много, известных запасов хватит на пару веков.

Крупных недостатков три. Оно довольно активно — то есть ржавеет и практически не встречается в самородном виде. Плавится при 1500°, эта температура труднодостижима в античное время. И, наконец, у чугуна нет всех этих хороших свойств, кроме дешевизны — так что до появления кричного горна чугун будет отходом.

Содержание

Что из железа делают [ править ]

Огромная часть всего добываемого железа получается в результате совместного расплава с углеродсодержащими веществами (графит, уголь каменный, уголь древесный), и логично, что получившиеся сплавы называют именно по содержанию в них углерода:

  • До 0,08 % — собственно железо.
  • До 2,14 % — сталь.
  • Свыше 2,14 % — чугун.

Углерод содержится в стали в виде карбидов железа или вкраплений атомов углерода в кристаллическую решетку железа, и при абсолютно одинаковом массовом содержании углерода свойства сплава могут здорово отличаться в зависимости от того, в каком виде углерод в нём находится.

В абсолютно любом угле присутствуют сера и фосфор, поэтому они есть и в стали, но это вредные примеси. При низких (чем ниже −20 градусов, тем сильнее) и при высоких (более 200 градусов) температурах они вызывают хрупкость и потерю прочности стальных изделий, а при обычных температурах — плохо влияют на свариваемость и ковкость железа. Именно по этой причине все стали делят по качеству именно по их содержанию — чем меньше серы и фосфора, тем более качественна сталь:

  • Обыкновенного качества — P и S — до 0,05 % (при 0,2 % углерода маркировка Ст20).
  • Качественная — P и S — до 0,035 % (при 0,2 % углерода маркировка Сталь 20).
  • Высококачественная — P и S — до 0,025 % (при 0,2 % углерода маркировка 20А).
  • Особовысококачественная — Р и S — до 0,015 % (при 0,2 % углерода маркировка 20Ш).

Разница в содержании серы и фосфора всего в 0,035 % повышает цену стали и изделий из неё в 50-1000 раз.

Практически обязательно в любой стали присутствуют кремний и алюминий. При плавлении железа в нём очень активно начинает растворяться кислород, что очень плохо: при остывании расплава он будет мелкопористым из-за пузырьков воздуха, да и коррозию никто не отменял. Поэтому в расплав обычно добавляют алюминий (реже кремний) для связывания кислорода. В старину металлурги добавляли для этого в расплав разные кремниевые флюсы или даже обычный песок. Кроме того, кремний обычно содержится и в угле, пусть и в малых количествах.

Углерод повышает прочность и коррозионную стойкость стали, но снижает её ковкость. Именно по этой причине режущие кромки оружия обычно соответствуют стали 60-80 (0,6-0,9 % углерода), но целиком сделать из неё меч нельзя, так как при нагрузке он скорее сломается, чем деформируется. С другой стороны, хрупкость имеет свои плюсы — иначе бы было проблемно заточить режущую кромку. Получить одновременно и прочную, и износостойкую сталь можно только добавлением к ней других веществ (легированием). При добавлении марганца можно получить очень прочную и износостойкую сталь — такие лезвия будут очень долго держать заточку и не ломаться. Именно из марганцовистой стали делают пружины, траки, торсионы, валы, шестерни. Только при большом содержании марганца повторно заточить кромку будет очень непросто, а иногда и невозможно.

Существуют также ферросплавы — сплавы железа с легирующими элементами; используют их только на приготовление стали. Так, в феррохроме 60+ % хрома, остальное железо, прочих элементов — по минимуму. Делают их, как правило, в электропечах.

Чугун впервые получили в постоянных железоделательных печах где-то в I тысячелетии; широко стали применять около XVII века. Сталь делают выжиганием углерода из чугуна, и в современном её виде получили в бессемеровском конвертере в середине XIX века.

История железа [ править ]

Эпоха до металлов [ править ]

Нелишне затронуть и её. Основными материалами каменных орудий кроманьонцев были кремний и кварц. Потомки накопили огромный практический опыт в их изготовлении и столь аккуратно выбирали небольшие камешки с острыми гранями, а умельцы и вовсе очень аккуратно кололи на них более крупные, что умудрялись собирать из них наконечники копий, стрел, гарпуны, а чуть позже — столовые ножи, шильца и даже иглы. По отзывам археологов, самые лучшие каменные ножи по остроте и рабочим качествам не особо уступали современным. Собственно, многие и сейчас пользуются керамическими ножами — это тоже камень, но искусственный. Для этого требовалось мастерство и опыт подбора заготовок на грани ВЫСОКОГО искусства и огромное количество времени на поиске самих заготовок. Иногда этим умельцам в поисках попадались куски странного красноватого камня со странным блеском…

Медь и бронза [ править ]

Медь — это первый металл, который стоит в ряду активности за водородом (то есть не поддаётся электрохимической коррозии). Соль меди контактирует с любым неблагородным металлом (например, железом) — железо образует соль, медь в осадок. Что из этого следует? А то, что по аналогии с золотыми существуют медные самородки. Вот так-то и придумали ковку. Потом придумали нагревать медь, чтобы избавиться от проблемных мест в самородках, получилась выплавка меди — из-за неактивности медь была единственным неблагородным металлом, который легко выплавляется из руд.

Читайте также:  Как самому подключить отключенный домофон eltis

Медь давала плохие инструменты, но их можно было починить — в отличие от каменных, которые надо было вытёсывать заново, долго и с трудом. А если дело совсем плохо — можно расплавить и заново отлить в форме. Медный век охватывает примерно X—IV тысячелетия до н. э.

Потом придумали мышьяковистую бронзу, сплав куда более прочный, чем медь, но с тремя крупными недостатками:

  • Плавка крайне вредна (вспомните хромого Гефеста — это он наглотался паров мышьяка).
  • Лом не утилизируется — мышьяковистая бронза имела слишком высокую температуру плавления, недостижимую для тех времен.
  • Сплав прочный, но хрупкий.

Позже, в первой половине II тысячелетия до н. э., перешли на оловянную либо сурьмистую бронзу. Но месторождений олова и сурьмы в античном мире было раз, два и обчёлся, зато владельцы этих рудников и торговые посредники имели дикий профит с них.

Подробнее о том, как подарили человеку медь податливые окисленные руды и как сдавались обжигу непокорные сульфидные, можно почитать в основной статье.

Метеоритное железо [ править ]

Чёрные железные камушки вполне себе обрабатываются по технологиям, знакомым с меди. Обычно в метеоритах есть примеси никеля и драгметаллов, придающие железу твёрдость. Оружие получалось приличное (на уровне современных кухонных ножей), но из-за дороговизны скорее оседало в сокровищницах королей, чем участвовало в бою.

Встречается и самородное железо; ближайшее к античному миру месторождение, ныне выбранное, было в Германии. Значительные его месторождения были и есть в Швеции, менее значительные рудники встречаются и встречались по всему альпийскому региону.

Сыродутная печь и возникшие вокруг неё технологии [ править ]

Древнейшее выплавленное железо стали получать по берегам Чёрного моря во II тысячелетии до н. э. Железистый песок жгли в сыродутной печи (построенной из земли и глины трубе) с древесным углём.

Любопытно, что из-за высокой температуры плавления железа (чуть ниже 1600°) процесс восстановления проходил без его плавления, в твёрдой фазе. Это мешало избавиться полученному железу от включений, шлака и непрореагировавшей руды.

То, что получилось, называлось крица — смесь железа и шлака. Чтобы избавиться от шлака, крицу проковывали молотом. Железо получалось дрянное, хуже тогдашней бронзы. К тому же сыродутная печь была одноразовая, на новую плавку приходилось строить новую печь. Многократной ковкой, совмещенной с обработкой хорошим флюсом, особо продвинутые мастера получать почти свободное от шлака «белое железо» — но стоило оно как минимум на порядок дороже обычного.

На рубеже I и II тысячелетий до нашей эры случилось вполне ожидаемое: разведанные месторождения олова были выработаны, а новых не нашли. Кто-то стал передавать бронзовые мечи по наследству, кто-то перешёл на «бросовый металл»… Чтобы получилась «Тисона, меч в тысячу марок», а не железяка какая-то, пришлось решить много задач, и они решались безвестными кузнецами доброе тысячелетие.

  • Как избавиться от примеси кремния — для этого вместе с железным песком закладывали флюс (известняк).
  • Как контролировать содержание углерода в железе. Делалось это кузнецами буквально на глаз, по цвету каления, и передавалось от одного к другому. Лучшие изделия делали из заготовок, пролежавших пару лет в земле или воде, чтобы самые плохие части проржавели.
  • Кристаллическое железо можно было получить только из расплава, а без него был выбор: много углерода — хрупко, мало — пластично. Пришлось сковывать пакеты заготовок с разным содержанием углерода — вот вам и знаменитые технологии производства японских катан (хотя делали так повсеместно). Плюс закалка кромки меча. А если много раз складывать и ковать — получается дамаск (не путать с булатом).

Не удивительно, что профессия кузнеца имела магический налёт. Ковали обычно парами: кузнец тук маленьким молоточком, здоровяк-молотобоец бум в это место здоровенной кувалдой! Так что знаменитая русская игрушка «мужик и медведь» имела вполне реальный прототип.

Только на рубеже I тысячелетия начался железный век, но он позволил, например, массово строить дома из брёвен. Одной из причин появления средневековья стало железо: меч, отработанный к IX в., требовал именно железа, причём хорошего. Плюс сложного обучения. А ещё доспехи, тоже железные. Вместе с хорошим питанием, присущим помещику, получился человек-танк, которого было трудно убить, да и невыгодно убивать: лучше взять в плен за выкуп. Вот такой вышел феодализм: воюем (и это дело было не такое опасное, как кажется), зато получаем земли за военную службу.

Железо было дорогое, и рекламой плотнику было, что он строит «без единого гвоздя». В кораблестроении использовались гвозди, но чаще деревянные, реже медные и бронзовые, т. к. нержавеющую сталь делать тогда не умели, чугун мало где применим, а железо и сталь мгновенно в море корродировали. И хотя металлические детали в кораблестроении применялись ещё с античности, но исключительно стягивающие и сквозные соединения с тщательной их обмазкой и защитой от воздуха: большие суда строить без применения металла чисто из дерева было просто нельзя из соображений прочности. Стальные, бронзовые, чугунные т. н. «дельные вещи» в виде рымов, талрепов, карабинов и т. д. применялись ещё до Колумба, а судовой кузнец был обязательным членом экипажа ещё задолго до отплытия эскадры Васко да Гамы в Индию.

Но в повозках железные и прочие гвозди применялись довольно широко — всё равно ресурс тех частей, которые сбивались гвоздями, был ниже ресурса гвоздей, зато с железными гвоздями ремонт проходил быстрее.

Металлолом и сейчас — не мусор, а утиль, а тогда перековывали всё, что было металлического! На пожарище мгновенно появлялись кузнецы в поисках гвоздей. До того, как появилось гвоздильное производство из проволоки, кованые гвозди имели вид четырёхгранной пирамиды — так всё ещё выглядят ж/д костыли (потому что громадные) и подковные ухнали (загибать удобнее).

Внимание, ошибка! В одной из мобильных игр я видел квест: помочь гномам найти месторождение каменного угля, чтобы не жгли деревья. Не помню, на топливо или на железо, объясню то и другое. На топливо: каменный уголь знают с древних времён (никакого хайтека не нужно, вспомним донбасские «копанки»), но уголь добывают в месторождениях, а потребляют везде. Только железная дорога позволила развозить уголь. На железо: каменный уголь содержит серу, которая делает железо хрупким. Нужен не просто уголь, а кокс.

И вторая ошибка, ставшая штампом — нарисовать какое-то круто выглядящее оружие, не задумываясь о технике боя и технологиях ковки.

Для третьей ошибки есть отдельная статья: Отлить меч.

Переход на промышленные технологии обработки железа [ править ]

Где-то в I тысячелетии индийцы придумали штукофен, или домницу — постоянную печь для выплавки железа с высокой (4 м и более) трубой для тяги. Мехи качали несколько человек, а то и водяной двигатель. В штукофене индусы сумели сделать булат — но для этого потребовалась качественная руда и графит вместо древесного угля. Да и сам процесс науглероживания железа не быстрый. Штукофен давал уже до 250 кг крицы в день — но очень много руды переводил в чугун. (По другим источникам, чугун смогли получить и древние римляне). Никакого применения этот чугун не имел и шёл в отходы: отделить железо от шлака можно было только ковкой, а чугун не куётся.

Не удивительно, что штукофен распространился, когда остальные технологии по железу были доведены до кондиции — около XIV в.

Новая печь, блауофен (XV в.). Сделали трубу ещё выше, добавили предварительный нагрев воздуха. Стало лучше железо, стало больше чугуна, но и он стал лучше — из него можно было лить строительные блоки и пушечные ядра.

Читайте также:  Железные ворота с элементами ковки фото

И тут, около XVI в., сделали такой механизм (кричный горн). На решётке лежит уголь, на нём — чугун. Под решёткой — подача воздуха. Чугун плавится, стекает вниз, и там углерод окисляется. Температура плавления железа больше, чем чугуна, кусок железа загустевал, его ломом вытаскивали наверх — противная, сам понимаете, работа. Когда накопится 50—100 кг крицы, её вытаскивают на проковку. Это оказалось революцией: теперь из чугуна можно делать железо (так называемый передельный процесс)! Метод с точки зрения химика нелепый: сплавить железо с углеродом, чтобы потом выжечь углерод? Но другой технологии не было. Тут уже не стали мелочиться: дунули посильнее и пустили весь металл в чугун. То, что получилось, назвали доменной печью — от слова «дуть». Отсюда же «надменный», то есть «надутый».

И поныне чугун делают в доменных печах, потомках тогдашней, из принципиально нового только кокс и работа на природном газу. А вот передельные процессы сегодня другие, и теперь вся история чёрной металлургии о том, как стали превращать чугун в железо и сталь.

Кокс — почти чистый углерод, добытый обжигом каменного угля без доступа воздуха — изобрели древние китайцы. Видимо, поначалу им топили дома вельмож, потом применили и в металлургии. История кокса на Западе аналогичная: к XVII в. в Англии случился дровяной кризис, запретили выплавлять чугун (его импортировали из России). Зато возник вопрос: чем топить пивоварни (угольный дым вредил бухлу). В XVII в. изобрели кокс, и только к XVIII в. его загрузили в домну.

Водяной двигатель мог качать мехи, а вот чтобы заменить здоровяка-молотобойца машиной, потребовался паровой двигатель (начало XVIII в.). Получился кузнечный пресс.

В конце XVIII в. Генри Корт придумал пудлинговую печь — главным отличием от кричного горна стала изоляция чугуна от топлива. Процесс производства железа был столь же противный. (Тот же Корт, кстати, придумал прокатный стан.)

Лирическое отступление: один из атрибутов стимпанка — шкив с кривыми спицами. Чугун к тому времени стал достаточно хорош, из него уже можно лить, например, станины машин — и эти самые шкивы. Но чугун остаётся хрупким, он может разломаться даже от теплового расширения — потому, чтобы как-то пружинил, спицы стали делать кривыми. А ещё количество спиц делали нечётным — чтобы при усадке отливки круглый шкив не стянуло в многогранник (давление от каждой спицы распределяется на две противолежащих);

В 1856 г. Генри Бессемер разработал первую печь по производству настоящей стали — так называемый бессемеровский конвертер. Это сосуд грушевидной формы с отверстиями внизу. Конвертер кладут на бок, заливают чугун, включают дутьё и ставят конвертер вертикально. Слова «бессемеровская сталь» стали своего рода брендом: теперь то, что кузнец собирал из полос разных сортов железа, можно было сделать, например, литьём или прокатом, массово и дёшево. А поскольку слиток — в отличие от поковки — достаточно однороден, такую сталь удобно обрабатывать резанием.

Современные техпроцессы чёрной металлургии [ править ]

В 1865 г. Пьер и Эмиль Мартены разработали мартеновскую печь. В основе — отражательный свод, уменьшающий контакт топочных газов с металлом, и регенераторы, предварительно нагревавшие воздух до высокой температуры. Последнее позволяло поднять температуру топочных газов и расплавить сталь.

Если в конвертер можно было грузить металлолом в очень небольших количествах, мартен снова сделал металлолом настоящим утилем. Мартеновская и бессемеровская сталь имели немного разные свойства, но из-за того, что мартеновский процесс более повторяем, он надолго стал главной технологией выплавки стали. В 2018 году в России закрыли последний мартен, и эти печи остались только в Индии и на Украине. Сейчас сталь плавят в конвертерах и электропечах.

Сталь продували, разумеется, воздухом. А в нём 78 % азота, и он вреден. В XX в. сделали дешёвый кислород, и его стали запускать в мартен (в конвертерах развивалась такая температура, что он прогорал). В умеренных, разумеется, количествах — огнеупоры плавились и там. В 1952 г. освоили кислородно-конвертерный процесс: кислород подавали сверху по трубе, а для охлаждения в него постоянно добавляли лом.

Хорошая сталь содержит много легирующих элементов. Но как сделать, чтобы они сплавились со сталью, а не окислились в шлак? Для этого в начале XX в. придумали электропечи — дуговые и индукционные. В них-то может быть любая атмосфера: хоть окислительная, хоть восстановительная, хоть нейтральная. Сначала в окислительной атмосфере добивались нужного количества углерода, убирали шлак, добавляли ферросплавы с нужными элементами и грели без доступа воздуха. В дуговой печи устраивали дугу между чугуном и графитовым электродом, в индукционной грели током высокой частоты.

Из относительно новых технологий — вакуумные печи (снижают количество азота и кислорода в стали), электрошлаковая переплавка (метод очистки стали от серы и фосфора) и прямое восстановление железа в обход чугуна (если дешёвая электроэнергия или большие штрафы за выбросы вредных веществ, бывает дешевле).

[Напишите кто-нибудь про них побольше]

Термообработка стали [ править ]

Базовые виды [ править ]

  • Отжиг (нагрев докрасна и медленное охлаждение вместе с печью, в горячей золе, песке и т. п.). Делает сталь пластичной и ковкой. Известен с глубокой древности (применялся еще для меди в медно-каменном веке)
  • Нормализация — самый простой вариант: нагрев докрасна и охлаждение на воздухе.
  • Закалка (нагрев докрасна и резкое охлаждение), обязательно совмещалась с последующим отпуском (умеренным нагревом — температура зависела от назначения: низкий — 150—250°, для режущего инструмента; средний — 350—500°, для пружин, доспехов и т. п., высокий — 500—700°, для ответственных металлоконструкций).

Закалка изобретена на рубеже II и I тыс. до н. э. (самая древняя находка — г. Идалион на Кипре). Это самая ответственная из операций термообработки: небольшая ошибка в температуре нагрева или способе погружения в закалочную жидкость может привести к трещинам или к сильным деформациям изделия. При этом будет ли лезвие острым или тупым — на 90 % зависело именно от температуры закалки!

В качестве традиционной закалочной среды применялась вода (обязательно прохладная — 15—25°), зачастую брали ее лишь из строго определенных рек (Халон и Хилока в Испании, Фюр — во Франции, Деруэнт — в Англии), а также растворы на ее основе, часто весьма экзотичные — моча трёхлетнего барана или рыжего мальчика (кстати, реально гораздо лучше воды: присутствующая в моче соль обеспечивает более резкую и равномерную закалку, а мочевина резко снижает риск появления трещин), кровь (реально — никуда не годный вариант: она моментально сворачивается и на изделии образуется комок белка, препятствующий нормальному охлаждению), молоко (дает не очень твердое, но очень острое лезвие — как и знаменитая закалка в потоке ветра). Для особо капризных изделий использовали закалку в мокрой х/б тряпке, в мокром войлоке (причем пропитанном не водой, а смесь крови, уксуса и лукового сока!), в стволе бананового дерева (он по твердости сопоставим с картофелиной), в свежескошенной траве или лесной ягоде и т. п.

Из неводных закалочных сред наиболее популярны разные виды масел (в наше время — индустриальных, в старину — животные и растительные; в Африке, ессно, особо котировалось оружие, закаленное в человеческом жиру).