Основные части трансформатора и их назначение

Силовым трансформатором называется электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого более высокого или более низкого напряжения при неизменной частоте. Трансформаторы выпускаются стандартных мощностей: 10, 16, 25, 40 и 63 кВ•А с увеличением каждого из этих значений в 10, 100, 1000 и 10000 раз.

Трансформаторы разделяются по способу охлаждения на масляные, сухие, с дутьевым и водомасляным охлаждением; по исполнению — для внутренней и наружной установок, герметичные и уплотненные; по числу фаз — одно- и трехфазные; по числу обмоток — двух- и трехобмоточные; по способу регулирования напряжения — под нагрузкой и при отключенном напряжении.

Сухие (без масла) трансформаторы выпускаются мощностью до 1600 кВ А и напряжением до 15, 75 кВ с естественным охлаждением. Достоинством сухих трансформаторов является их пожаробезопасность.

Для масляных трансформаторов с естественным масляным охлаждением, используемых в закрытых помещениях, обеспечивается непрерывная вентиляция для отвода нагретого и доступа холодного воздуха.

Основными параметрами трансформаторов являются: номинальные напряжения обмоток, номинальная мощность, номинальный ток и номинальная нагрузка обмоток.

Обмотки первичного и вторичного напряжения трехфазных двухобмоточных трансформаторов соединяют по схемам звезда-звезда или звезда-треугольник. В зависимости от направления намотки обмотки, последовательности соединений фазных обмоток и чередования фаз при соединении в звезду или треугольник можно получить ту или иную группу соединений. Наиболее распространенные схемы соединений обмоток трансформаторов приведены на рис. 115.


Рис. 115. Схемы соединений обмоток двухобмоточных трансформаторов:
а — звезда-звезда с выведенной нейтралью; б — звезда-треугольник; в — звезда с выведенной нейтралью-треугольник.

Силовые трансформаторы имеют обозначения, состоящие из букв и цифр. Первая буква указывает число фаз: О — однофазный и Т — трехфазный. Вторая буква указывает вид охлаждения: М — масляное естественное; Д — масляное с дутьевым охлаждением и естественной циркуляцией масла; ДЦ — масляное с дутьевым охлаждением и принудительной циркуляцией масла; MB — масляно-водяное охлаждение масла с естественной циркуляцией; Ц — масляно-водяное охлаждение с принудительной циркуляцией масла; С, СЗ, СТ — естественное воздушное охлаждение соответственно при открытом, закрытом и герметизированном исполнениях; у трансформаторов с заполнением негорючих диэлектриков вид охлаждения обозначается буквами Н — естественное охлаждение негорючим жидким диэлектриком и НД — охлаждение негорючим жидким диэлектриком с принудительным дутьем.

Третья буква указывает число обмоток (Т — трехобмоточный), четвертая — выполнение одной из обмоток с устройством регулирования напряжения под нагрузкой — РПН и обозначается буквой Н.

Мощность и высшее напряжение трансформатора указываются в обозначениях дробью. Числитель дроби указывает номинальную мощность в кВ•А, а знаменатель — высшее напряжение обмоток (ВН) в кВ.

Например, трансформатор типа ТДТН-15000/35 — трехфазный, с дутьевым охлаждением, трехобмоточный, с регулировкой напряжения под нагрузкой, мощностью 15000 кВ•А и напряжением ВН — 35 кВ.


Рис. 116. Трехфазный силовой трансформатор мощностью 1000 кВ•А с масляным охлаждением:
1 — бак; 2, 5 — нижняя и верхняя ярмовые балки; 3 — обмотка ВН; 4 — регулировочные отводы; 6 — магнитопровод; 7 —деревянные планки; 8 — отвод от обмотки ВН; 9 — переключатель; 10 — подъемная шпилька; 11 — крышка; 12 — подъемное кольцо; 13 — ввод ВН; 14 — ввод НН; 15 — выхлопная труба; 16 — расширитель; 17 — маслоуказатель; 18 — газовое реле; 19 — циркуляционные трубы; 20 — маслоспускной кран; 21 — катки.

Основой конструкции силового двухобмоточного трансформатора (рис. 116) является его активная часть, состоящая из магнитопровода 6 с расположенными на нем обмотками низшего (НН) и высшего 3 (ВН) напряжений, отводов 8 и переключателя напряжения 9. Магнитопровод 6 трансформатора набирается из листов специальной электротехнической стали толщиной 0,35 или 0,5 мм. Отдельные части магнитопровода собирают в жесткую конструкцию из трех вертикальных стержней с верхним 5 и нижним 2 ярмами с помощью стяжных шпилек и прессующих ярмовых балок, образуя замкнутый контур. Между собой листы стали изолированы лаком или теплостойким покрытием на основе жидкого стекла. Ярмовыми балками из швеллеров листы стали магнитопровода плотно опрессовывают при помощи шпилек. Ярмовые балки и шпильки изолируют от активной стали магнитопровода. Активная часть трансформатора помещается в металлический бак, который предохраняет обмотки от повреждений и является резервуаром для трансформаторного масла.

Обмотки трансформаторов изготовляют из электротехнической меди или алюминия прямоугольного или круглого сечения. Чаще всего применяют цилиндрические и винтовые обмотки. Их отделяют от сердечника, друг от друга и от стенок бака цилиндрами из изолирующего материала (бакелита).

Цилиндрические обмотки выполняют из круглых или прямоугольных проводов с изоляцией из хлопчатобумажной пряжи и наматывают в один слой (однослойная), в два слоя (двухслойная) или несколько слоев (многослойная) одним или несколькими проводами по винтовой линии (рис. 117).


Рис. 117. Однослойная (а), двухслойная (б) и многослойная (в) конструкции цилиндрических обмоток силовых трансформаторов:
1 — выравнивающие кольца; 2 — коробочка из электрокартона; 3 – конец первого слоя обмотки; 4 – планка из бука; 5 – отводы для регулирования напряжения.

Начала и концы обмоток располагают на их противоположных торцах. Однослойные и двухслойные обмотки применяются в качестве обмоток низкого напряжения, а многослойные — в качестве обмоток ВН в трансформаторах мощностью до 630 кВ•А.

Цилиндрические многослойные обмотки изготовляют из круглого провода, намотанного на бумажно-бакелитовый цилиндр, плотно укладывая витки слоями и прокладывая между ними листы кабельной бумаги (рис. 117, в). При большом числе слоев между ними укладывают планки из древесины твердых пород или из нескольких слоев полосок склеенного электрокартона, образуя вертикальные каналы. Такая конструкция обеспечивает хороший отвод теплоты для охлаждения обмотки. Для увеличения механической прочности обмотку обматывают хлопчатобумажной лентой, пропитывают глифталевым лаком и запекают при температуре около 100 С.

В более мощных трансформаторах применяют непрерывные обмотки из плоских проводов без разрывов и паек при переходе из одной катушки в другую. Эти обмотки наматываются на рейки, уложенные на бумажно-бакелитовом цилиндре и образующие в своих промежутках вертикальные каналы охлаждения, а горизонтальные каналы создаются с помощью пакетов из электротехнического картона, собранных на проваренных в масле деревянных планках. Они применяются в силовых трансформаторах в качестве обмоток низшего и высшего напряжения.

Баки силовых трансформаторов изготовляют из листовой стали. Они могут быть овальной или прямоугольной форм. Баки изготовляют гладкими, а для лучшего охлаждения масла — ребристыми, трубчатыми и с радиаторами. Баки устанавливают на катки для перемещения трансформаторов в пределах помещения подстанции. Сверху бак закрывается съемной крышкой, на которой размещают вводные изоляторы, термометр, пробивной предохранитель, переключатель отводов обмотки для регулирования напряжения, расширитель, газовое реле и предохранительную трубу.

Для присоединения обмоток к токопроводящим шинам применяют фарфоровые изоляторы, через которые проходят медные стержни.

Изоляционное масло в трансформаторе используется в качестве изолирующей и охлаждающей среды. В процессе эксплуатации трансформатора масло стареет и теряет свои первоначальные изоляционные свойства за счет воздействия на него кислорода, влаги, грязи и высокой температуры.

Для измерения температуры верхних слоев масла в трансформаторах мощностью до 1000 кВ•А применяют стеклянный термометр с шкалой от -20 до +100 ºС, а в трансформаторах свыше 1000 кВ•А — термометрический сигнализатор ТС-100, который служит для контроля температуры масла и для сигнализации или отключения трансформатора при превышении температуры свыше допустимого предела.

Читайте также:  Ресанта саи 190к схема и неисправности ремонт

В тех случаях, когда вторичные сети имеют изолированную от земли нейтраль, для безопасной работы применяется пробивной предохранитель, имеющий воздушные промежутки. В аварийном режиме воздушные промежутки пробиваются и обмотка низкого напряжения заземляется.


Рис. 118. Переключатели ТПСУ-9-120/11 (а), ТПСУ-9-120/10 (б) отводов обмоток для регулирования напряжения силовых трансформаторов и их схема (в):
1 — сегментный контакт; 2 — коленчатый вал; 3, 4 — бумажно-бакелитовая трубка; 5 — резиновое уплотнение; 6 — крышка трансформатора; 7 — фланец; 8 — стопорный болт; 9 — колпак; 10 — указатель положения; 11 — неподвижный контакт.

Для поддержания необходимого уровня напряжения потребителей у трансформаторов с регулировкой напряжения (рис. 119, а и б) проводят изменение коэффициента трансформации с помощью переключателей ответвлений обмоток (рис. 118). Регулирование напряжения проводится в пределах ±5 %. Трансформаторы с РПН (регулирование под нагрузкой) имеют большое число ступеней и более широкой диапазон регулирования (до 20%).


Рис. 119. Схемы трансформаторов с РПН без реверсирования (а) и с реверсированием (б):
1 — основная обмотка; 2 — регулировочная обмотка; 3 — устройство переключения; 4 — переключатель (реверсор).

Часть обмотки ВН с ответвлениями называется регулировочной обмоткой. Расширение регулировочного диапазона без увеличения числа отводов достигается применением схем с реверсированием (рис. 119, б). Переключатель-реверсор 4 позволяет присоединить регулировочную обмотку 2 к основной 1 согласно или встречно, благодаря чему диапазон регулирования удваивается. Устройство 3 PПН обычно включается со стороны нейтрали X. что позволяет выполнять их с пониженной изоляцией.

Устройство РПН состоит из контактора, разрывающего и замыкающего цепь рабочею тока; избирателя (переключателя), контакты которого размыкают и замыкают электрическую цепь без тока; реактора или резистора; приводного механизма (рис. 120).


Рис. 120. Последовательность работы переключающих устройств с РПН:
Р – реактор; К1, К2 – контакторы; РО — регулировочная обмотка; П — переключатель.

Очередность в работе контакторов и избирателей обеспечивается приводным механизмом с реверсивным пускателем. В нормальном режиме работы через реактор Р проходит ток нагрузки, а в процессе переключения ответвлений — реактор ограничивает значение тока Iцирк. Контактор, в котором при переключении возникает дуга на контактах, помещают в отдельном масляном баке. Управление устройством РПН осуществляется автоматически от реле напряжения или дистанционно диспетчером.

На маслоуказателе расширителя нанесены три контрольные черты, соответствующие уровню масла при температуре -45, +15, +40.


Рис. 121. Расположение на крышке трансформатора расширителя, газового реле и предохранительной трубы:
1 — расширитель; 2 — газовое реле; 3 — предохранительная труба.

Газовое реле (рис. 121) служит для сигнализации или отключения трансформатора в случаях внутренних повреждений. Разлагающиеся под действием высоких температур масло, дерево или изоляция выделяют газы, которые воздействуют на поплавки с контактами газового реле. В случае отказа работы газового реле в трансформаторе создается повышенное давление, которое разрушает мембрану предохранительной трубы и выбрасывает газы и масло наружу, предотвращая опасность взрыва бака. Мембрана трубы изготовляется из стекла или фольги.


Рис. 122. Схема автотрансформатора:
а — однофазного; б — трехфазного.

Автотрансформаторы представляют собой трансформаторы, у которых обмотка низшего напряжения является частью обмотки высшего напряжения (рис. 122). Автотрансформаторы широко используются для связи электрических сетей напряжением 150/121, 230/121. 350/121, 500/121 и 750/330 кВ. Они выполняются трехфазными или и виде групп, состоящих из трех однофазных. Автотрансформаторы низкого напряжения широко применяются для регулирования напряжения в цепях управления, автоматики, а также при испытаниях оборудования и сетей.

В мощных автотрансформаторах напряжение регулируют переключателем, как и в обычных трансформаторах.

Трансформатор – электромагнитный аппарат с двумя или более обмотками,

имеющими между собой магнитную связь, который служит для преобразования

переменного тока одного напряжения в переменный ток другого напряжения

Если первичное напряжение больше вторичного, то трансформатор называют понижающим, если первичное напряжение меньше вторичного – повышающим.

1. Для передачи и распределения электрической энергии (силовые трансформаторы).

Генераторы дают напряжение от 6 до 24 кВ, передают энергию на напряжении 110, 220, 330, 500, 750 кВ. Для повышения напряжения используют трансформаторы. При потреблении электроэнергии напряжение понижают до 220/380 В, следовательно, тоже необходимы трансформаторы. Таким образом, электроэнергия пока она доходит до потребителя обычно преобразуется 5-6 раз.

2. Для обеспечения схемы включения вентилей в преобразовательных устройствах и согласования напряжения на входе и выходе преобразователя (преобразовательные трансформаторы).

В вентильных преобразователях для выпрямления тока и преобразования его в переменный ток, отношение напряжения на входе и на выходе зависит от схемы включения вентилей. Следовательно, при подаче на вход стандартного напряжения на выходе будет нестандартное; поэтому нужен трансформатор.

3. Для технологических целей – сварка, питание электрических печей (печные и сварочные трансформаторы).

4. Для преобразования частоты, получения импульсных сигналов, питания цепей радиоаппаратуры, устройств связи автоматически и телемеханики электробытовых приборов.

5. Для включения измерительных приборов – преобразуют ток или напряжение (измерительные трансформаторы тока и напряжения).

• По числу фазных обмоток трансформаторы бывают однофазные, трехфазные и многофазные.

• По числу систем фазных обмоток – двухобмоточные и многообмоточные.

• По конструкции силовые трансформаторы делятся на два типа: сухие и масляные. Сухие трансформаторы охлаждаются воздухом. В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом. Недостатком масла является его горючесть и, при некоторых условиях, способность образовывать с воздухом взрывоопасные смеси. Для устранения этих недостатков вместо масла используют специальные жидкости: совтол и пиранол (не окисляющиеся и химически устойчивые).

Основные элементы трансформатора – магнитная система (сердечник) с обмотками.

Магнитопровод состоит из стержней – часть, охватываемая обмотками, и ярма – участка, который связывает стержни.

Сердечник набирается из листов специальной трансформаторной стали толщиной 0,35; 0,5 мм. Для изоляции листов применяется бумага толщиной 0,03 мм и масляный лак.

Бумага дешевле лака, но имеет меньшую теплопроводность, нагревостойкость и механическую прочность.

Магнитная система бывает двух типов:

– стержневая (на каждом стержне обмотка); рис.1.2.1(а)

– броневая (все обмотки на одном стержне); рис.1.2.1(б)

В силовых трансформаторах мощностью более 100 МВА и напряжением 220 кВ применяют бронестержневые конструкции. Она получается из стержневой, если добавить два стержня, закрывающих обмотки фаз. Рис.(2.1.2)

Бронестержневые трансформаторы имеют меньшую высоту магнитопровода, что важно при транспортировке, так как в этом случае трансформатор проходит под железнодорожные габариты.

В основном выпускаются стержневые трансформаторы.

• По взаимному расположению стержней и ярм магнитные системы могут иметь плоское (рис.1.2.3 (а)) и пространственное выполнение (рис.1.2.3 (б)).

В качестве материала магнитной системы также используется холоднокатонная анизотропная текстурированная сталь марок 3413, 3404, 3403, 3406 в рулонах толщиной 0,3; 0,35; 0,5 мм. Сталь толщиной 0,3 и 0,35 мм имеет электроизоляционное покрытие.

Магнитопровод шихтуется ( т.к. при этом уменьшаются потери на вихревые токи), пластины ярма и стержней переплетаются.(рис.1.2.4)

Обычно располагают по 2-3 листа (позиции 1 и 2) в слое. Стык может быть прямым и косым. При косом стыке уменьшается длина участка магнитной цепи, на котором направление потока не совпадает с направлением проката (уменьшаются потери холостого хода)(рис.1.2.5)

Рисунок 1.2.4

Форма стержня стремится к цилиндру, следовательно, пакеты выполняются ступенями. Приближение к окружности даёт лучшее заполнение пространства обмотками, уменьшение габаритов трансформатора.

(рис.1.2.6) Рисунок 1.2.5

Сечение ярма можно выполнять без ступеней, на ярме их делают меньше. Ступени нужны, чтобы магнитный поток распределялся более равномерно. Кроме того сечение ярма выполняют на 10…15% больше, чем стержня для уменьшения тока холостого хода.

Ярмо и стержни стягиваются шпильками.

Кроме магнитной системы и обмоток в масляном трансформаторе имеются:

Читайте также:  Устройство и принцип работы трехфазного асинхронного двигателя

– бак (чугун, конструкционная сталь). Он может быть гладким (до 30 кВА) или трубчатым (до 3000 кВА), чтобы увеличить поверхность охлаждения трансформатора.

– расширитель – резервуар, частично заполненный маслом.

– маслоуказатель – располагается на расширителе, позволяет определить уровень масла. Уровень рассчитывается таким образом, чтобы при любых внешних изменениях окружающей среды, нагреве (при возрастании нагрузки) обмоток маслу было куда расширяться. Бак должен быть полностью залит трансформаторным маслом, чтобы уменьшить поверхность контактирования масла с воздухом (окисление ведет к ухудшению свойств трансформаторного масла).

– радиаторы – располагаются на баке, используются в крупных трансформаторах для увеличения поверхности охлаждения (до 10000 кВА).

– изоляторы ВН и НН – располагаются на крышке, выполняются из фарфора или керамики. Размеры зависят от мощности трансформатора. В крупных трансформаторах изоляторы могут быть маслонаполненными.

– регулятор напряжения – позволяет изменять напряжение на ±5%.

– выхлопная труба – соединяется с баком – это стальная труба со стеклянной мембраной на конце толщиной 3-5 мм. Служит для газовой защиты. Повреждение обмоток приводит к испарению масла, выделяются газы, которые выдавливают мембрану, деформации бака не происходит.

– газовое реле – осуществляет тепловую защиту трансформатора. Располагается между расширителем и баком. Перегрев способствует разрушению изоляции, следовательно, газы попадают в реле и вытесняют оттуда масло, а поплавок опускается и замыкает сигнальную цепь.

Выполняются из медного или алюминиевого провода.

Конструкция обмоток включает:

– изоляционные детали (для создания главной и продольной изоляции);

– емкостные кольца и экраны.

Основным элементом обмотки является виток, который выполняется одним проводом или группой параллельных проводов. Ряд витков на цилиндрической поверхности образуют слой.

Слой – совокупность проводников, находящихся на одном расстоянии от стержня.

• По направлению намотки обмотки делятся на правые и левые (удобнее) подобно резьбе винта.

• По способу размещения обмоток на стержне различают обмотки:

1. Концентрические – в каждом поперечном сечении окружности, имеющие общий центр. Обмотка низкого напряжения внутри, так как ее легче изолировать от стержня.

2. Чередующиеся – части обмоток высшего и низшего напряжения попеременно следуют друг за другом по высоте стержня. Применяются только в специальных трансформаторах (электропечных, испытательных)(рис.1.2.8)

• По конструкции и способу намотки обмотки подразделяются на:

1. Цилиндрические (одно- или многослойные).

2. Катушечные (непрерывные, дисковые, переплетенные).

3. Винтовые (одно- и двухходовые).

Рисунок 1.2.8 Основные эксплуатационные требования к обмоткам:

– электрическая прочность изоляции (изоляция должна выдерживать без повреждений перенапряжения в сети);

– механическая прочность (гарантия от механических деформаций и повреждений при таких коротких замыканиях).

– нагревостойкость (обеспечение свободной теплоотдачи) при заданном классе изоляции.

Ι. Цилиндрические обмотки

Это наиболее простая обмотка, применяется в трансформаторах до 630 кВА в качестве обмоток низкого напряжения и в масляных трансформаторах в качестве обмоток высшего напряжения до 400 кВА и напряжения до 35 кВ.

Это обмотка, состоящая из расположенного на цилиндрической поверхности слоя витков без интервалов (то есть витки наматываются по винтовой линии вдоль образующей цилиндра вплотную друг к другу)(рис.1.2.9).

Многослойная цилиндрическая обмотка состоит из двух или более концентрически расположенных слоев.

При сечении провода менее 8…10 мм2 – обмотка многослойная из круглого провода. При больших сечениях – двухслойная из прямоугольного провода (плашмя или на ребро).

Между слоями устанавливают изоляцию из электрокартона.

ΙΙ. Винтовая обмотка

Может образовывать от 4 до 20 параллельных ветвей и используется при токах более 300…400 А. Представляет собой видоизмененную цилиндрическую обмотку и подразделяется на простую винтовую (одноходовую) – как цилиндрическая, но между двумя соседними по высоте проводниками оставляют канал, то есть расстояние, и полувинтовую – (двухходовую) – каждые два витка, кроме концевых, объединяют в одну катушку без канала (рис.1.2.10).

В винтовых обмотках для равномерного распределения тока меж- ду параллельными витками делают Рисунок 1.2.10 транспозицию (перекладку) провоников.

Тогда все проводники будут в одинаковом положении, относительно поля, и магнитный поток будет также распределяться по ним равномерно.

Сущность транспозиции – каждый из параллельных проводников в разных катушках перекладывается из одного слоя в другой так, что на всей длине обмотки этот проводник будет находиться во всех слоях, следовательно, активное и индуктивное сопротивления между началом и концом провода будут одинаковы у всех параллельных проводов.

Транспозиция бывает групповая, общая, совершенная и несовершенная.

Совершенная – когда проводник после перекладки оказывается на том же месте.

ΙΙΙ. Катушечные обмотки.

Группу последовательно соединенных витков, намотанную в виде плоской спирали и отделенную от других таких же групп, называют катушкой, а обмотку, состоящую из ряда катушек, расположенных в осевом направлении – катушечной.

Катушечные обмотки могут быть дисковыми и непрерывными.

Дисковая обмотка состоит из ряда отдельно намотанных одинарных или двойных (спаренных) катушек, каждая из которых имеет несколько витков, намотанных один на другой по спирали.

Изоляция – кабельная бумага.

Дисковые обмотки трудоемки, широко применяются в мощных трансформаторах.

Различают одинарные или двойные дисковые катушки. В одинарных катушках количество паек в два раза больше (пайка наружных и внутренних концов). Используется прямоугольный провод. Число витков в катушке 4…25.

Замковые прокладки выполняют из электрокартона (они образуют горизонтальные каналы) и пластин (штампованных)(рис.1.2.13).

Непрерывная обмотка – ряд плоских катушек (дисков), отделенных друг от друга каналами. Особенность – катушки соединяются между собой без пайки путем особого способа перекладки одной из катушек в каждой паре.

Преимущества непрерывной обмотки:

– отсутствие разрывов при намотке;

– большая опорная поверхность, следовательно, устойчивость к осевым усилиям при коротких замыканиях;

– относительно свободный проход масла как вдоль, так и поперек поверхности (в горизонтальные каналы между катушками), следовательно, хорошее охлаждение и можно увеличить мощность обмотки;

– непрерывные обмотки могут выполняться с ответвлениями для регулирования напряжения.

Переплетенная обмотка – более сложная и трудоемкая, но обеспечивает защиту от импульсных перенапряжений для обмоток от 220 до 750 кВ. В такой обмотке порядок последовательного соединения витков отличается от последовательности их расположения в катушках. Каждая катушка наматывается двумя параллельными проводами, а затем производится соединение этих проводов по отдельной схеме. В переплетенной обмотке используются емкостные кольца (для защиты от импульсных перенапряжений), в отличие от других обмоток здесь нет необходимости в экранирующих витках.

Принцип действия трансформатора

При подключении первичной обмотки (1) трансформатора к сети с синусоидальным напряжением в обмотке возникает ток I1, который создает синусоидальный поток Ф, замыкающийся по сердечнику. Поток Ф индуцирует ЭДС в первичной и вторичной обмотке, под действием ЭДС возникает ток I2 и на зажимах (2) устанавливается некоторое напряжение U2.

Результирующий поток ФС

Рисунок 1.2.14 создаётся током обеих обмоток.

Фσ1, Фσ2 – потоки рассеяния, которые ослабляют основной поток ФС и замыкаются в основном по воздуху.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9237 – | 7356 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Человеку, мало знакомому с электрикой сложно представить себе, что такое трансформатор, где он задействован, назначение элементов его конструкции.

Общая информация об устройстве

Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования тока переменной частоты с одним напряжением в переменный ток с иным напряжением, но с прежней частотой, основанный на явлении электромагнитной индукции.

Читайте также:  Стоимость станка для производства саморезов

Применяются приборы во всех сферах деятельности человека: электроэнергетике, радиотехнической, радиоэлектронной промышленности, бытовой сфере.

Конструкция

Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

Важнейшие конструктивные части следующие:

  • обмотка;
  • каркас;
  • магнитопровод (сердечник);
  • охлаждающая система;
  • изоляционная система;
  • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

Производство приборов налажено в трех базовых концепциях обмоток:

Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

Принцип работы

Принцип работы трансформатора базируется на эффекте взаимоиндукции. Поступление тока переменной частоты от стороннего поставщика электроэнергии на вводы первичной обмотки формирует в сердечнике магнитное поле с переменным потоком, проходящего через вторичную обмотку и индуцирующее образование электродвижущей силы в ней. Закорачивание на приемнике электроэнергии вторичной обмотки обуславливает прохождение сквозь приемник электротока из-за влияния электродвижущей силы, вместе с тем в первичной обмотке образуется ток нагрузки.

Назначение трансформатора — перемещение преобразованной электрической энергии (без перемены ее частоты) к вторичной обмотке из первичной с подходящим для функционирования потребителей напряжением.

Классификация по видам

Силовые

Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

Автотрансформаторы

Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

Трансформаторы тока

Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

Трансформаторы напряжения

Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

Импульсные

Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды.

Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

Разделительные

Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

Существует два типа таких устройств:

Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

Согласующие

Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

Пик-трансформаторы

Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

Сдвоенный дроссель

Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

Режимы работы

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • КПД;
  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.