В мобильной версии нет поиска и могут не отображаться формулы. Для поиска задач и отображения формул откройте веб версию (кнопка внизу страницы) Сайт существует, благодаря рекламе Google. Пожалуйста, отключите блокировщик рекламы
Реклама 1 AdSense
вторник, 1 ноября 2016 г.
Начертите график плавления меди
Начертите график плавления меди. По ветикали отложите температуру (1 клетка 20 градусов цельсия), по горизонтали — время ( 1 клетка 10 мин ). Начальная температура меди равна 1000 градусов, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Температура плавления меди 1085 градусов Цельсия. Сначала в течение 20 минут температура меди будет расти от 1000 градусов до 1085 градусов, потом температура будет оставаться постоянной до окончания плавления, потом снова будет расти. Чтобы определиться со скоростью нарастания температуры во время нагрева, надо разделить разность температуры плавления и начальной температуры на время разогрева до температуры плавления. Таким образом, первый участок графика буде представлять собой линию графика T =1000+4,25t, где T — температура, t — время.
Плавление кристаллического тела — сложный процесс. Для его изучения рассмотрим график зависимости температуры кристаллического тела (льда) от времени его нагревания (рис. 18). На нём по горизонтальной оси отложено время, а по вертикальной — температура льда.
Рис. 18. График зависимости температуры льда от времени нагревания
Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С. При дальнейшем нагревании температура льда росла. На графике это участок АВ. Увеличение температуры происходило до 0 °С — температуры плавления льда. При 0 °С лёд начал плавиться, а его температура перестала расти. В течение всего времени плавления температура льда не менялась, хотя горелка продолжала гореть. Этому процессу соответствует горизонтальный участок графика — ВС.
После того как весь лёд расплавился и превратился в воду, температура снова стала подниматься (участок CD). Когда температура достигла +40 °С (точка D), горелка была погашена. Как видно из графика, температура воды после этого начала снижаться (участок DE). Вода стала охлаждаться. Когда её температура упала до 0 °С, начался процесс отвердевания воды — её кристаллизация, и пока вся вода не отвердеет, температура её не изменится (участок EF). Лишь после этого температура твёрдой воды — льда стала уменьшаться (участок FK).
Вопросы
- Пользуясь графиком (см. рис. 18) и текстом, относящимся к нему, объясните, что происходит с водой в отрезки времени, соответствующие каждому из участков графика.
- Как по графику можно судить об изменении температуры вещества при нагревании и охлаждении?
- Какие участки графика соответствуют плавлению и отвердеванию льда? Почему эти участки параллельны оси времени?
Задание
Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Это любопытно.
Аморфные тела. Плавление аморфных тел
Существует особый вид тел, который принято также называть твёрдыми телами. Это аморфные тела. В естественных условиях они не обладают правильной геометрической формой.
К аморфным телам относятся: твёрдая смола (вар, канифоль), стекло, сургуч, эбонит, различные пластмассы.
По многим физическим свойствам, да и по внутреннему строению аморфные тела стоят ближе к жидкостям, чем к твёрдым телам.
Кусок твёрдой смолы от удара рассыпается на осколки, т. е. ведёт себя как хрупкое тело, но вместе с тем обнаруживает и свойства, присущие жидкостям. Твёрдые куски смолы, например, медленно растекаются по горизонтальной поверхности, а находясь в сосуде, со временем принимают его форму. По описанным свойствам твёрдую смолу можно рассматривать как очень густую и вязкую жидкость.
Аморфное тело — смола
Стекло обладает значительной прочностью и твёрдостью, т. е. свойствами, характерными для твёрдого тела. Однако стекло, хотя и очень медленно, способно течь, как смола.
В отличие от кристаллических тел, в аморфных телах атомы или молекулы расположены беспорядочно, как в жидкостях.
Кристаллические твёрдые тела, как мы видели (см. рис. 18), плавятся и отвердевают при одной и той же строго определённой для каждого вещества температуре. Иначе ведут себя аморфные вещества, например смола, воск, стекло. При нагревании они постепенно размягчаются, разжижаются и, наконец, превращаются в жидкость. Температура их при этом изменяется непрерывно. При отвердевании аморфных тел температура их также понижается непрерывно.
В аморфных твёрдых телах, как и в жидкостях, молекулы могут свободно перемещаться друг относительно друга. При нагревании аморфного тела скорость движения молекул увеличивается, увеличиваются расстояния между молекулами, а связи между ними ослабевают. В результате аморфное тело размягчается, становится текучим.
Зная строение аморфных тел, можно создавать материалы с заданными свойствами. В последние годы аморфные тела находят широкое применение при производстве считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, магнитных экранов и др.
Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Ответ
Температура плавления меди 1085 °С.
Сначала в течение 20 минут температура меди будет расти от 1000 °С до 1085 °С, потом температура будет оставаться постоянной до окончания плавления (в течении 30 мин), потом снова будет расти.