Модуль продольной упругости для стали

Изучить один из методов определения модуля продольной упругости Е для стали.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Модуль упругости – величина, характеризующая упругие свойства материала. В случае малых деформаций, когда справедлив закон Гука, т.е. имеет место линейная зависимость между напряжениями и деформациями, модуль упругости представляет собой коэффициент пропорциональности.

Нормальному напряжению s, возникающему при простом растяжении (сжатии), соответствует в направлении растяжения модуль продольной упругости Е (модуль Юнга). Он равен отношению нормального напряжения s к относительному удлинению e, вызванному этим напряжением в направлении его действия

(1)

и характеризует способность материала сопротивляться растяжению (сжатию). Размерность модуля упругости Па, МПа.

Модуль упругости устанавливается экспериментально механическим испытанием образцов изучаемого материала. Он не является строго постоянной величиной для одного и того же материала, его значения меняются в зависимости от химического состава материала, от его предварительной обработки. Установлено, что модуль упругости слабо меняется с умеренным нагревом материала. Для стали это имеет место до температуры порядка 300…400 0 С. При более высоких температурах необходимо учитывать зависимиость модуля от температуры.

Предлагаемый метод модуля упругости заключается в сравнении значений деформаций балки, лежащей на двух опорах, определенных теоретически по формуле (7), приведенной в лаборатрной работе 3, и опытным путем на установке СМ4А, описание которой дано в лабораторной работе 1. Из полученого равенства определяют модуль упругости Е.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

1. Изобразить расчетную схему балки на двух опорах (рисунок) с сосредоточенной силой F в т.С, делящей балку пополам.

2. Определить изгибающий момент на участке АС.

3. Составить уравнения упругой линии балки на участке АС.

F yC

А C B

l/2

l

Рис. Расчетная схема балки

4. Определить постоянные интегрирования из условий закрепления балки: при z=0 y=0, при z=l/2 y’=0.

5. Записать уравнения упругой линии балки на участке АС с учетом найденных значений интегрирования.

6. Выразить перемещение yc в точке С при нагрузке F=10 Н при неизвестном модуле упругости Е.

7. Установить индикатор для измерения прогибов балки в точке С лабораторной установки СМ4А.

8. Нагрузить балку в точке С начальной нагрузкой F=20 Н, показания индикатора установить на нуль.

9. Показания индикатора записать в таблицу.

№ п/п FC, Н ΔFC, Н Показания индикатора , мм Приращения прогиба мм
9,00
Среднее значение

10.Давая одинаковые приращения нагрузке F = 10 Н, произвести три нагружения балки. Наибольшая суммарная нагрузка не должна превышать 50 Н. После каждого нагружения фиксировать показания индикатора и записывать в таблицу.

11.Определить среднее арифметическое приращение прогиба

12.Приравнять значение прогиба , определенного в п. 11, со значением перемещения ус (п. 6), определить модуль ЕОП и табличным ( ) значениями модуля продольной упругости

Допустимым считается отклонение в пределах .

4. СОСТАВЛЕНИЕ ОТЧЕТА

Отчет о проделанной работе должен содержать: цель работы, схему опытной устаноовки и ее нагружение, таблицу с исходными данными и результатами опыта и расчеты по определению модуля упругости с сравнении с табличным значением модуля ЕТ.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какое свойство материала характеризует модуль продольной упругости?

2. Какое допущение принимается при выводе приближенного дифференциального уравнения изогнутой оси балки?

3. Из каких условий определяются постоянные интегрирования дифференциального уравнения изогнутой оси балки?

4. О чем говорит гипотеза плоских сечений (гипотеза Бернулли)?

5. В каком случае имеет место чистый изгиб?

6. Краткое описание опытной установки.

Лабораторная работа 5

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.

Читайте также:  Флюс и канифоль одно и тоже

Общие понятия

Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.

Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Модуль упругости

Стоит отметить, что эта величина непостоянная. Даже для одного материала она может иметь разное значение в зависимости от того, в какие точки была приложена сила. Кое-какие пластично-упругие материалы имеют практически постоянное значение модуля упругости при работе как на растяжение, так и на сжатие: сталь, алюминий, медь. А есть и такие ситуации, когда эта величина измеряется формой профиля.

Некоторые значения (величина представлена в миллионах кгс/см2):

  1. Алюминий — 0,7.
  2. Древесина поперёк волокон — 0,005.
  3. Древесина вдоль волокон — 0,1.
  4. Бетон — 0,02.
  5. Каменная гранитная кладка — 0,09.
  6. Каменная кирпичная кладка — 0,03.
  7. Бронза — 1,00.
  8. Латунь — 1,01.
  9. Чугун серый — 1,16.
  10. Чугун белый — 1,15.

Разница в показателях модулей упругости для сталей в зависимости от их марок:

  1. Подшипниковые стали (ШХ-15) — 2,1.
  2. Пружинные (60С2) и штамповые (9ХМФ) — 2,03.
  3. Нержавеющие (12Х18Н10Т) — 2,1.
  4. Низколегированные (40Х, 30ХГСА) — 2,05.
  5. Обычного качества (Ст. 6, ст.3) — 2,00.
  6. Конструкционные высокого качества (45,20) — 2,01.

Ещё это значение изменяется в зависимости от вида проката:

  1. Трос с сердечником металлическим — 1,95.
  2. Канат плетёный — 1,9.
  3. Проволока высокой прочности — 2,1.
Читайте также:  Partner p350 chrome инструкция

Как видно, отклонения в значениях модулей упругой деформации стали незначительны. Именно по этой причине большинство инженеров, проводя свои расчёты, пренебрегают погрешностями и берут значение, равное 2,00.

Если на изделие из определенного материала воздействовать некой силой, то он начинает сопротивляться этому действию: сжиматься, растягиваться или изгибаться. Способность к такому противостоянию можно оценить и выразить математически. Название этой прочностной характеристики – модуль упругости.

Параметр для каждого материала различный, и характеризует его прочность. Пользуются величиной при разработке конструкций, деталей и других изделий, с целью предотвращения нарушения их целостности.

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м 2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм 2 или Н/м 2 :

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):
  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.

Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).
Читайте также:  Срок поверки электрического счетчика

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.