Методы измерения твердости материалов

Твёрдость — свойство материала сопротивляться внедрению более твёрдого тела — индентора.

Метод определения восстановленной твёрдости.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объёму отпечатка. Различают поверхностную, проекционную и объемную твёрдость:

  • поверхностная твёрдость — отношение нагрузки к площади поверхности отпечатка;
  • проекционная твёрдость — отношение нагрузки к площади проекции отпечатка;
  • объёмная твёрдость — отношение нагрузки к объёму отпечатка.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано.

  • Макродиапазон регламентирует величину нагрузки на индентор от 2 Н до 30 кН.
  • Микродиапазон (см. микротвёрдость) регламентирует величину нагрузки на индентор менее 2 Н и глубину внедрения индентора больше 0,2 мкм.
  • Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм [1] . Часто твёрдость в нанодиапазоне называют нанотвердость (англ. nanohardness ). Величина нанотвердости может значительно отличаться от микротвёрдости для одного и того же материала. [2][3] .

Измеряемая твёрдость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта ( indentation size effect ). Характер зависимости твердости от нагрузки определяется формой индентора:

  • для сферического индентора — с увеличением нагрузки твёрдость увеличивается — обратный размерный эффект ( reverse indentation size effect );
  • для индентора в виде пирамиды Виккерса или Берковича — с увеличением нагрузки твёрдость уменьшается — прямой или просто размерный эффект ( indentation size effect );
  • для сфероконического индентора (типа конуса для твердомера Роквелла) — с увеличением нагрузки твёрдость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для конической части индентора).

Содержание

Методы измерения твёрдости [ править | править код ]

Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

Для измерения твёрдости существуют несколько шкал (методов измерения):

  • Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому твердосплавным шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга см.твёрдость по Мейеру); размерность единиц твердости по Бринеллю МПа (кгс/мм²). Твёрдость, определённая по этому методу, обозначается HBW, где H — hardness (с англ. — «твёрдость»), B — Бринелль, W — материал индентора, затем указывают диаметр индентора, нагрузку и время выдержки. Стальные шарики в качестве инденторов для метода Бринелля уже не используются.
  • Метод Роквелла — твёрдость определяется по относительной глубине вдавливания стального, твердосплавного шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HRA, HRB, HRC и т.д.; твёрдость вычисляется по формуле HR = 100 (130) − h/e, где h — глубина относительного вдавливания наконечника после снятия основной нагрузки, а e — коэффициент, равный 0,002 мм для метода Роквелла и 0,001 мм для супер Роквелла. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B — 130 единиц. Всего существует 54 шкалы измерения твердости по Роквеллу.
  • Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади поверхности отпечатка (причём площадь поверхности отпечатка берётся как площадь части геометрически правильной пирамиды, а не как площадь поверхности фактического отпечатка); размерность единиц твёрдости по Виккерсу кгс/мм². Твёрдость, определённая по этому методу, обозначается HV с обязательным указанием нагрузки и времени выдержки.
  • Методы Шора:
  • Твёрдость по Шору (метод вдавливания) — твёрдость определяется по глубине проникновения в материал специальной закалённой стальной иглы (индентора) под действием калиброванной пружины [4] . В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твёрдых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.
  • Дюрометры и шкалы Аскер — по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.
  • Твёрдость по Шору (метод отскока) — метод определения твёрдости очень твёрдых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа — измерительного прибора для данного метода), падающий с определённой высоты [5] . Твёрдость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H — Hardness, S — Shore и x — латинская буква, обозначающая тип использованной при измерении шкалы [6][7] .

Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал, это — не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

  • Метод Кузнецова — Герберта — Ребиндера — твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;
  • Метод Польди (двойного отпечатка шарика) — твёрдость оценивается в сравнении с твёрдостью эталона, испытание производится путём ударного вдавливания стального шарика одновременно в образец и эталон (см. иллюстрацию);
  • Шкала Мооса — определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.
  • Метод Бухгольца — метод определения твердости при помощи «прибора Бухгольца». Предназначен для испытания на твёрдость (твёрдость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании «индентора Бухгольца». Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233 [8][9] .
Читайте также:  Циклон для заточного станка

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

Для инструментального определения твёрдости используются приборы, именуемые твёрдомерами. Методы определения твёрдости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближённые таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчётным методом перейти от одного способа определения твёрдости к другому.

Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Понятие твердости

Твердостью называют свойство материала сопротивляться внедрению в его поверхность индентора.

В чем измеряется твердость?

Существуют два основных способа отображения твердости материалов:

  • в килограмм-силы на квадратный миллиметр (кгс/мм 2 );
  • может обозначаться буквами HB (HBW), HRB, HRC, HV, HA, HD, HC, HOO и т.д.

По каким методам можно измерять твердость?

В настоящее время разработано много способов определения твердости металлов, таких как:

  • измерение твердости вдавливанием под действием статической нагрузки (по методу Бринелля, Роквелла, Супер-Роквелла, Виккерса, М.С.Дрозда, Герца, Лудвика, монотрон Шора, пресс Бринелля);
  • измерение твердости динамическим вдавливанием (по методу Мартеля, Польди, вертикальный копер Николаева, пружинный прибор Шоппера и Баумана, маятниковый копер Вальцеля, склероскоп Шора, маятник Герберта, маятниковый склерометр Кузнецова);
  • измерение микротвердости статическим вдавливанием (по методу Липса, Егорова, Хрущева, Скворцова, Алехина, Терновского, Шоршорова, Берковича, Кнупа, Петерса,Эмерсона, микротвердомер Цейсса-Ганеманна и др.);
  • измерение твердости царапанием (напильником Барба, по Моосу, прибор Мартенса, Хенкинса, микрохарактеризатор Бирбаума, склерометр О’Нейля, Григорович, Беркович).

Среди всех этих способов наибольшую популярность получил способ внедрения индентора под действием статической нагрузки. Основными методами для измерения твердости являются: Бринелль, Роквелл, Виккерс, Шора.

Требования к измерению твердости

К самому распространенному способу измерения твердости, предъявляются следующие требования:

  • измерительный прибор должен быть надежным по конструкции, удобным в обращении, универсальным и применимым ко всем без исключения твердым телам, а сама операция по измерению твердости – простой и быстрой;
  • вне зависимости от величины прилагаемого усилия или затрачиваемой энергии, значение твердости для однородного тела при постоянной температуре должно быть материальной константой;
  • поверхность образца и способ его крепления должны обеспечивать надежную фиксацию, не допускают смещение образца относительно оси приложения нагрузки;
  • твердость должна иметь совершенно определенный и ясный физический смысл, и правильную размерность, характеризующую сопротивление материала пластической деформации.

Как рассчитать твердость материала?

Чем выше твердость, тем более высокая нагрузка нужна для определения его твердости. Чем точнее метод, тем выше требования к подготовке испытательной поверхности материала. Соответственно нам необходимо подобрать метод определения твердости, дающий минимальную погрешность при минимальном повреждении поверхности и минимальных затратах на подготовку поверхности к испытанию.

В чем измеряется твердость стали?

Наиболее распространенный способ определения твердости стали – внедрения индентора под действием статической нагрузки по методам Бринелля, Роквелла, Виккерса (см. таблицу 1). И для каждого метода имеется своя шкала измерения твердости.

Твердосплавный сферический индентор

с ⌀2,5 и усилием 187,5 кгс

Твердость вычисляется по диагонали отпечатка как нагрузка, деленная на площадь поверхности отпечатка:

, кгс/мм 2

Алмазный индентор конической формы с углом при вершине 120° с усилием 60 кгс

Мерой твердости служит разность глубин проникновения наконечника при приложении основной и предварительной нагрузки, измеренная в условных делениях

– при измерении по шкале А (HRA) и С (HRC):

Разность представляет разность глубин погружения индентора (в миллиметрах) после снятия основной нагрузки и до её приложения (при предварительном нагружении).

– при измерении по шкале B (HRB):

Твердосплавный сферический индентор с диаметром 1,588 мм (1/2”) и усилием 100 кгс

Алмазный индентор конической формы с углом при вершине 120° с усилием 150 кгс

Прибор Виккерса и Микро-Виккерса

Алмазный индентор пирамидальной формы c 4 гранями

с усилием 1 кгс

с усилием 0,5 кгс

Твердость вычисляется по диагонали отпечатка как нагрузка, деленная на площадь поверхности отпечатка

Нагрузка Р может меняться от 9,8 (1 кгс) до 980 Н (100 кгс). Твердость по Виккерсу HV = 0.189*P/d 2 , МПа, если Р выражена в Н, и HV = 1,854*P/d 2 , кгс/мм 2 , если Р выражена в кгс.

Твердость Н определяют по той же формуле, что и твердость по Виккерсу:

Алмазный индентор пирамидальной формы c 3 гранями

с усилием 0,1 кгс

Название прибора Принцип действия и форма наконечника Пример обозначения шкал Формула вычисления твердости
Индентор Шкала Обозначение
Прибор Бринелля Вдавливание стального закаленного шарика диаметром 1,25; 2,5; 5 или 10 мм и др., нагрузками в диапазоне от 1 до 62,5 кгс или от 62,5 до 3000 кгс в плоскую поверхность испытуемого тела HB (w) HB (w) 2,5/187,5
Прибор Роквелла и Супер-Роквелла Вдавливание алмазного конуса с углом заострения 120° или стальных шариков диаметром 1/2”, 1/4”, 1/8” или 1/16” стандартными нагрузками 150, 100 и 60 кгс (Роквелл) или 45, 30 и 15 кгс (Супер-Роквелл) HRA 60 HRA HRB (w) 100 HRB (w)
HRC 150 HRC
Вдавливание алмазной пирамиды с квадратным основанием и углом при вершине между гранями 136° c нагрузками от 0,01 до 50 кгс НК НК 1,0
Читайте также:  Кованые изделия фото идеи

Методы статического определения твердости вдавливанием

Название прибора, автор (год) Принцип действия и форма наконечника Измеряемый параметр, метод вычисления твердости и ее условная размерность
По методу Герца (1881) Сдавливание полусферы и плоскости из испытуемого материала до появления следов пластической деформации или трещины HГ = 6Р/πd 2 кр, кгс/мм 2
Монотрон Шора (1900) Вдавливание алмазного шарика диаметром 0,75 мм или стальных шариков диаметром 1/16" и 2,5 мм на стандартную глубину 0,045 мм Мерой твердости служит нагрузка (кгс), необходимая для вдавливания на стандартную глубину
По методу Лудвика (1907) Вдавливание стального конуса с углом заострения 90° в плоскость испытуемого тела Твердость вычисляется как нагрузка, деленная на площадь проекции
По методу М. С. Дрозда (1958) Вдавливание шарика нагрузкой Р, измерение глубины восстановленного отпечатка h и критической нагрузки Рs, отвечающей переходу от упругого к остаточному опечатку Н = (Р-Рs)/πDhвосст, кгс/мм 2

Методы динамического определения твердости

Название прибора, автор (год) Принцип действия и форма наконечника Измеряемый параметр, метод вычисления твердости и ее условная размерность
По методу Мартеля (1895) Удар стальной пирамидой, укрепленной на падающем бойке По энергии удара и диагонали отпечатка определяется твердость H = Е1/V, кгс/мм 2
Вертикальный копер Николаева Удар бойка весом 3 кгс, падающего с высоты 530 мм, по стальному шарику 10 мм, прижатому к изделию По диаметру отпечатка и тарировонным кривым определяется НВ, кгс/мм 2
Пружинный прибор Шоппера Удар стальным шариком диаметром 10 мм с помощью сжатой пружины По глубине отпечатка определяется НВ, кгс/мм 2
Пружинный прибор Баумана Удар бойком со стальным шариком диаметром 5 или 10 мм с помощью сжатой пружины с запасом энергии 0,15 и 0,53 кгс·см По диаметру динамического отпечатка и тарировочным кривым находится НВ, кгс/мм 2
Прибор Польди Удар молотком по бойку, под которым находится эталон и испытуемое тело с зажатым между ними закаленным стальным шариком диаметром 10 мм По диаметрам отпечатков на образце и эталоне определяется твердость: обр = 2 НВэт*d 2 эт/d 2 обр, кгс/мм 2
Маятниковый копер Вальцеля (1934) Удар стальным шариком диаметром 5 или 10 мм, укрепленным на маятниковом копре Угол отскока в условных единицах
Склероскоп Шора Падение бойка весом 2,3 гс с коническим алмазным наконечником с высоты 254 мм Число условных единиц высоты отскока бойка
Маятник Герберта Качание маятника весом 2 или 3 кгс, опирающегося на поверхность испытуемого тела стальным или рубиновым шариком диаметром 1 мм Бремя 10 односторонних качаний маятника в секунду или амплитуда одного качания в условных единицах
Маятниковый склерометр Кузнецова (1931) Качание маятника весом 1 кгс, опирающегося двумя стальными наконечниками или шариками на испытуемое тело Время затухания колебаний до заданной амплитуды

Методы статического определения твердости вдавливанием

Твердость определяется как отношение нагрузки (в гс) к площади поверхности отпечатка (по диагонали, в мкм)

Твердость определяется как отношение нагрузки (в кгс) к площади поверхности невосстановленного «отпечатка», исчисляемой по длинной диагонали d (в мм):

Н = 2092 Р/а 2 = 1570 Р/l 2 , кгс/мм 2 ;

Н = ЗR*sin а *Р/l 3 = 4167960Р/l 3 , кгс/мм 2

Методы определения твердости царапанием

Твердость — свойство материала сопротивляться внедрению в него другого, более твёрдого тела — индентора.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка.

Различают поверхностную, проекционную и объемную твёрдость:

– поверхностная твёрдость — отношение нагрузки к площади поверхности отпечатка;

– проекционная твёрдость — отношение нагрузки к площади проекции отпечатка;

– объёмная твёрдость — отношение нагрузки к объёму отпечатка.

Твёрдость определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора. Различают поверхностную, проекционную и объемную твёрдость:

– поверхностная твёрдость — отношение силы сопротивления к площади поверхности внедренной в материал части индентора;

– проекционная твёрдость — отношение силы сопротивления к площади проекции внедренной в материал части индентора;

– объёмная твёрдость — отношение силы сопротивления к объёму внедренной в материал части индентора.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2Н до 30 кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2мкм. Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм. Часто твердость в нанодиапазоне называют нанотвердостью (nanohardness).

Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта, в англоязычной литературе — indentation size effect. Характер зависимости твердости от нагрузки определяется формой индентора:

– для сферического индентора — с увеличением нагрузки твердость увеличивается — обратный размерный эффект (reverse indentation size effect);

– для индентора в виде пирамиды Виккерса или Берковича — с увеличением нагрузки твердость уменьшается — прямой или просто размерный эффект (indentation size effect);

– для сфероконического — с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

Косвенно твердость также может зависеть от:

1. Межатомных расстояний.

2. Координационного числа — чем выше число, тем выше твёрдость.

4. Природы химической связи

5. От направления (например, минерал дистен — его твёрдость вдоль кристалла 4, а поперёк — 7)

6. Хрупкости и ковкости

7. Гибкости — минерал легко гнётся, изгиб не выпрямляется

8. Упругости — минерал сгибается, но выпрямляется

9. Вязкости — минерал трудно сломать (например, жадеит)

11. и ряда других физико-механических свойств материала.

Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода – лонсдейлит, на 58 % превосходящий по твёрдости алмаз и фуллерит. Однако практическое применение этих веществ пока маловероятно. Самым твёрдым из распространённых веществ является алмаз.

Методы определения твёрдости по способу приложения нагрузки делятся на: 1)статические и 2) динамические (ударные).

Для измерения твёрдости существует несколько шкал:

– Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга; размерность единиц твердости по Бринеллю МПа (кг-с/ммІ). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твёрдость, определённая по этому методу, обозначается HB, где H = hardness, B — Бринелль;

– Метод Роквелла — твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) ? kd, где d — глубина вдавливания наконечника после снятия основной нагрузки, а k — коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B – 130 единиц.

– Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка; размерность единиц твёрдости по Виккерсу кг-с/ммІ. Твёрдость, определённая по этому методу, обозначается HV;

– Твёрдость по Шору (Метод вдавливания) — твёрдость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.

– Дюрометры и шкалы Аскер — по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.

– Твёрдость по Шору (Метод отскока) — метод определения твёрдости очень твёрдых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа — измерительного прибора для данного метода), падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H — Hardness, S — Shore и x — латинская буква, обозначающая тип использованной при измерении шкалы.

Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал это — не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

– Метод Кузнецова — Герберта — Ребиндера — твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;

– Метод Польди (двойного отпечатка шарика) — твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон;

– Шкала Мооса — определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.

– Метод Бухгольца — метод определения твердости при помощи прибора «Бухгольца». Предназначен для испытания на твердость (твердость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании индентора «Бухгольца». Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233.

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости. Для инструментального определения твёрдости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам. Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому. Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Название прибора и автор (год) Принцип действия и форма наконечника Вычисление твердости и ее условная размерность
По методу Лидса (1936) Вдавливание пирамиды Виккерса 136° собственным весом индентора (35 г) и давлением воздуха на поршень
Микротвердомер Цейсса— Ганеманна (1940) Вдавливание пирамиды Виккерса нагрузкой 2—100 гс, создаваемой плоскими пружинами То же
ПМТ-2, ПМТ-3 (Хрущов, Беркович) Вдавливание пирамиды Виккерса сменными нагрузками 2—500 гс То же
По методу Кнупа, Петерса, Эмерсона (1939) Вдавливание алмазного наконечника Кнупа (пирамида с основанием в виде сильно вытянутого ромба и углами между ребрами 130° и 172°30′) с нагрузкой 50—4909 гс
По методу Берковича Вдавливание алмазной трехгранной пирамиды с углом между гранью и осью 65°
По методу Егорова и др. (1970) Вдавливание алмазного лезвия, образованного двумя цилиндрами радиусом 2 мм, оси которых! пересекаются под углом 136°
По методу Калей, Хрущова, Скворцова, Алехина, Терновского, Шоршорова (1968-1973) Вдавливание алмазной 136-градусной пирамиды с регистрацией нагрузки и глубины погружения индентора в процессе испытания
Читайте также:  Как посчитать площадь сечения трубы