Сила упругости
Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.
Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.
Определение. Что такое сила упругости?
Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние.
Рассмотрим простейшие деформации — растяжение и сжатие
На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.
Закон Гука
Для малых деформаций x ≪ l справедлив закон Гука.
Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе.
Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.
Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние.
Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε = x l . Напряжением в теле называется отношение σ = — F у п р S . Здесь S — площадь поперечного сечения деформированного тела. Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению.
Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E ≈ 2 · 10 11 Н м 2 , а для резины E ≈ 2 · 10 6 Н м 2
Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня.
Концы стержня лежат на двух опорах, которые действуют на тело с силой N → , называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения.
Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает.
Вес тела — это сила, с которой оно действует на опору.
Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величиы сил. Прибор, предназначенный для этого — динамаметр.
Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.
При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k ).
В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.
Определение и формула жесткости пружины
Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.
Чаще всего ее обозначают $<overline
Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.
Рассмотрим пружину, на которую действует растягивающая сила ($overline
Силу $overline$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости ($<overline
где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.
Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).
Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:
где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.
Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:
Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.
Формула жесткости соединений пружин
Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:
где $k_i$ — жесткость $i-ой$ пружины.
При последовательном соединении пружин жесткость системы определяют как:
Примеры задач с решением
Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $frac<Н><м>. $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.
Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:
При упругих деформациях выполняется закон Гука:
[F=kDelta l left(1.2
ight).]
Из (1.2) найдем удлинение пружины:
Длина растянутой пружины равна:
Вычислим новую длину пружины:
Ответ. 1) $k’=10 frac<Н><м>$; 2) $l’=0,21$ м
Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $Delta l_2$?
Решение. Если пружины соединены последовательно, то деформирующая сила ($overline
Для второй пружины запишем:
Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:
[k_1Delta l_1=k_2Delta l_2left(2.3
ight).]
Из равенства (2.3) получим удлинение первой пружины:
Ответ. $Delta l_1=frac
Формулы и способы расчета пружин из стали круглого сечения по ГОСТ 13765
Пружина сжатия Пружина растяжения
Наименование параметра | Обозначение | Расчетные формулы и значения |
---|---|---|
Сила пружины при предварительной деформации, Н | F 1 | Принимается в зависимости от нагрузки пружины |
Сила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), Н | F 3 | Принимается в зависимости от нагрузки пружины |
Рабочий ход пружины, мм | h | Принимается в зависимости от нагрузки пружины |
Наибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/с | v max | Принимается в зависимости от нагрузки пружины |
Выносливость пружины, число циклов до разрушения | N F | Принимается в зависимости от нагрузки пружины |
Наружный диаметр пружины, мм | D 1 | Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766…ГОСТ 13776 |
Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформации | δ | δ = 1 — F 2 / F 3 (1) Для пружин сжатия классов I и II δ = 0,05 — 0,25 для пружин растяжения δ = 0,05 — 0,10 для одножильных пружин класса III δ = 0,10 — 0,40 для трехжильных класса III δ = 0,15 — 0,40 |
Сила пружины при максимальной деформации, Н | F 3 | ![]() |
Уточняется по таблицам ГОСТ 13766 ÷ ГОСТ 13776
s» (при F0 > 0)

Для трехжильных пружин

Для трехжильных пружин
G = 7,85 х 10 4
где g — ускорение свободного падения, м/с 2
γ — удельный вес, Н/м 3
Для пружинной стали ρ = 8•10 3

Для пружин с предварительным напряжением
Для трехжильных пружин


где n2 — число опорных витков

Для трехжильных пружин

Для трехжильных пружин
Рекомендуется назначать от 4 до 12
i | 4,0 | 4,5 | 5,0 | 5,5 | 6,0 | 7,0 и более |
Δ | 1,029 | 1,021 | 1,015 | 1,010 | 1,005 | 1,000 |




где n3 — число обработанных витков
Для трехжильных пружин
Для пружин растяжения с зацепами



Для пружин растяжения

Для пружин растяжения

Для трехжильных пружин
Для пружин растяжения



Для трехжильных пружин





Для пружин растяжения с предварительным напряжением
Методика определения размеров пружин
Исходными величинами для определения размеров пружин являются силы F 1 и F 2, рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке v max, выносливость N F и наружный диаметр пружины D 1 (предварительный).
Если задана только одна сила F2 , то вместо рабочего хода h для подсчета берут величину рабочей деформации s 2, соответствующую заданной силе
По величине заданной выносливости NF предварительно определяют принадлежность пружины к соответствующему классу
По заданной силе F 2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F 3
По значению F 3, пользуясь таблицей, предварительно определяют разряд пружины
По таблицам «Параметры пружин» находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D 1. В этой же строке находят соответствующие значения силы F 3 и диаметра проволоки d
Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ 3 находят по таблице, для пружин из холоднотянутой и термообработанной проволоки τ 3 вычисляют с учетом значений временного сопротивления Rm . Для холоднотянутой проволоки Rm определяют из ГОСТ 9389, для термообработанной — из ГОСТ 1071
По полученным значениям F 3 и τ 3, а также по заданному значению F 2 по формулам (5) и (5а) вычисляют критическую скорость vK и отношение vmax / vK , подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу.
При несоблюдении условий vmax / vK < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия. Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин
По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3 , после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25)