Краткая техническая характеристика электронно лучевая сварка

Содержание

Содержание

Сущность процесса электронно-лучевой сварки

Электронно-лучевая сварка (ЭЛС) осуществляется в вакууме, с помощью сфокусированного потока электронов с большой удельной мощностью, который воздействует на сварные кромки, расплавляя их.

Сварка тонкого металла проводится потоком мощностью, примерно, 104 Вт/см 2 . Для однопроходной сварки больших толщин металла, порядка 200-300мм, необходима мощность 10 5 -10 6 Вт/см 2 .

Высокая концентрация энергии в лучевом потоке позволяет получать узкие и глубокие сварные швы с минимальной зоной термического влияния и высокими механическими свойствами при этом, сварка выполняется на больших скоростях.

Параметры и показатели ЭЛС

К характеристикам электронного луча, измеряемым в процессе сварки, относятся сила тока луча I, ускоряющее напряжение U, сила тока фокусирующей системы Iф, рабочее расстояние (расстояние от центра фокусирующей системы до сварных кромок) L, угол сходимости луча а, скорость перемещения лазерного луча V. Мощность луча Q=IU, Вт. Эти параметры задаются при сварке и с помощью них можно определить удельную мощность Qу, Вт/см 2 и диаметр электронного луча d:

Если сварка ведётся в импульсно-периодическом режиме, то среднюю мощность луча можно определить по формуле:

где Iи – сила тока луча в импульсе, А; U – ускоряющее напряжение, В; f – частота импульсов, Гц; t – продолжительность импульса, с. Скорость сварки в импульсном режиме определяется по формуле:

где K – коэффициент перекрытия точек (обычно находится в пределах 0,5-0,9); b – диаметр сварной точки, см.

Наиболее распространённые значения параметров электронного луча для сварки находятся в следующих пределах: Q=1-120 кВт, при U=25-120 кВ, а=1-5°, t=20-200 мм; Vи=0,1-3 см/с; d=0,1-3 мм, f=1-100 Гц, t=5-100 мс, К>10.

Схема установки электронно-лучевой сварки

Электронно-лучевая сварка, в большинстве случаев, выполняется вертикальным, либо горизонтальным лучом в вакуумных камерах, размер которых зависит от размеров свариваемого изделия. Объём сварочных камер может составлять от 0,1 до сотен кубических метров. На рисунке ниже показана схема установки ЭЛС:

Электронная пушка, расположенная в камере (или на камере) создаёт электронный луч. В камере создают вакуум, который может колебаться в широких пределах: 1-10 -3 Па. Но даже в низком вакууме (1Па), содержание кислорода в 17 раз, а азота в 10 раз меньше, чем в особо чистом аргоне, поэтому, защита зоны сварки в вакуумной камере очень эффективна.

Технология электронно-лучевой сварки

Техника ЭЛС

Электронно-лучевую сварку можно выполнять в нижнем положении вертикальным лучом, а также её можно применять при сварке вертикальных и горизонтальных швов на вертикальной стене. В этом случае электронный луч будет горизонтальным.

Сварка в нижнем положении рекомендуется при сваривании сталей толщиной до 40мм, или при сварке титановых и сварке алюминиевых сплавов толщиной до 80мм. С помощью горизонтального луча можно проварить металл толщиной до 400 мм со сквозным проплавлением. Для однопроходной ЭЛС конструкция должна учитывать глубокое проникновение луча в металл. На рисунке слева даны распространённые примеры конструкций, свариваемые электронным лучом.

Зазор в стыке составляет 0,1-0,2мм при сварке металла толщиной до 30мм. При сварке металла с толщиной более 30мм, величина зазора составляет 0,3мм. В общем случае, диаметр луча должен быть больше величины зазора.

Технологические приёмы ЭЛС

При электронно-лучевой сварке есть ряд специальных приёмов, позволяющих улучшить качество сварного шва:

1. Сварка наклонным лучом (отклонение луча составляет порядка 5-7°) позволяет уменьшить такие дефекты в сварном шве, как поры и несплошность металла, а также позволяет добиться равномерной кристаллизации металла.

2. Для легирования металла шва и для восполнения испаряющихся в процессе сварки элементов, используют присадку.

3. Для улучшения отхождения газов и пара из металла, сварку ведут на дисперсной прокладке из гранул или мелко нарубленной сварочной проволоки. Толщина прокладки составляет 40мм.

4. Сварку в узкую разделку (0,8-8мм) выполняют в нижнем положении за счёт наплавки присадочного материала в прямоугольную разделку кромок.

5. Сварку ведут тандемом из двух электронных пушек разной мощности. Более мощная пушка выполняет проплавление, а менее мощная пушка формирует корень канала, либо хвостовую часть ванны.

6. Для проверки позиционирования луча и очистки свариваемых кромок применяют предварительные проходы лучом.

7. Двустороннюю сварку выполняют одновременно с двух сторон стыка или последовательно, примерно на половину толщины металла.

8. В процессе сварки применяют развёртку электронного луча, тем самым создают лучшие газо- и гидродинамические условия формирования канала. Развёртка может быть продольная, поперечная, Х-образная, по окружности, по эллипсу и др. Двойное преломление луча в процессе развёртки позволяет качественнее проварить корень шва и снизить дефекты в нём.

9. Для сварки одновременно двух и более стыков выполняют расщепление луча с помощью отклоняющей системы.

10. Для управления теплоотдачей в сварной шов используют модуляцию тока луча, чаще всего с частотой 1-100Гц.

11. По окончании сварки выполняют так называемый "косметический" проход. Это повторный проход, который призван устранить дефекты сварного шва как внешние, так и внутренние.

Расчёт некоторых параметров режима ЭЛС

Скорость сварки, необходимая для проникновения луча на глубину Н, определяется по формуле:

На рисунке ниже представлена экспериментальная зависимость термического КПД nт проплавления от параметра Q/(HVсв) для сварки сталей:

Связь параметров электронного луча с геометрическими характеристиками определяется по формуле:

Оборудование для электронно-лучевой варки

Классификация и состав установок для электронно-лучевой сварки

По степени специализации установки для электронно-лучевой сварки делятся на универсальные и специализированные. По давлению в рабочей камере: с высоким вакуумом (с давлением в камере менее 1Па), с промежуточным вакуумом (давление в камере от 1 до 10 Па) и для сварки в среде защитных газов или в атмосфере (с давлением 1000-100000 Па).

Читайте также:  Рэс9 рс4524 204 содержание драгметаллов

По способу создания вакуума в зоне сварки различают камерные электронно-лучевые установки (когда изделие находится внутри рабочей камеры) и с локальным вакуумированием (вакуум создаётся только в зоне сварки).

На рисунке выше показана структура камерной установки для ЭЛС. В состав любой подобной установки обязательно входит электронно-лучевая пушка, источник питания, система создания вакуума, система управления.

Электронно-лучевые пушки

Электронно-лучевые пушки создают электронный луч. Основные узлы пушки показаны на рисунке слева. Это генератор электронов и система проведения луча. В состав генератора электронов входит катод, управляющий электрод и анод. В систему проведения луча входят юстирующие, фокусирующие и отклоняющие катушки.

Катоды бывают накальными (термокатоды) или плазменными. Термокатоды изготавливают из вольфрама, тантала, сплавов этих металлов с рением, или из гексаборида лантана.

Высоковольтные изоляторы изготавливают из керамики, стекла или специальных пластмасс. Анод и управляющий электрод изготавливаются из меди или нержавеющей стали.

Между анодом и катодом проложено ускоряющее напряжение. Управление лучом происходит путём изменения потенциала управляющего электрода по отношению к катоду.

Источники питания электронно-лучевой пушки (ЭЛП)

В состав источников питания ЭЛП входит источник ускоряющего напряжения, а также источники питания управляющего электрода, катода, юстирующей катушки, фокусирующей катушки и отклоняющей катушки. В состав источника ускоряющего напряжения входит регулирующий элемент на первичной или вторичной стороне высоковольтного трансформатора с преобразованием частоты питающего напряжения, или без него. На рисунке ниже показана схема источников ускоряющего напряжения.

Регулируют напряжение тиристорами или транзисторами на первичной стороне. Регулировка на вторичной стороне происходит при помощи специальных высоковольтных ламп. Для предохранения ЭЛП от электрических пробоев, источники ускоряющего напряжения оснащаются устройствами автоматического повторного включения. Это оснащение позволяет успешно выполнять сварку при частых пробоях при этом, значительного снижения качества сварки не происходит.

Источники ускоряющего напряжения располагают в баке с трансформаторным маслом, которое, кроме всего прочего, играет роль охлаждающей среды. Существуют также источники ускоряющего напряжения до 60 кВ, в которых в качестве охлаждения применяется воздух или компаунд.

Для гальванического разделения в источнике питания управляющего электрода предусмотрены трансформаторы высокой чистоты или совместно используемые светодиод/фототранзистор, соединённые между собой световодом. Для обеспечения постоянных параметров системы проведения луча, питание юстирующей, фокусирующей и отклоняющей катушек осуществляется при помощи регулятора тока.

Вакуумная система электронно-лучевой установки ЭЛУ

Вакуумная система ЭЛУ необходима для обеспечения требуемого давления в ЭЛП и в рабочей камере. В большинстве случаев, давление составляет 0,1-0,001 Па в ЭЛП и 0,01-10 Па в рабочей камере. ЭЛП изолируется от рабочей камеры посредством специального вакуумного клапана, который открывается на время проведения сварки. На рисунке справа представлена схема типичной вакуумной камеры электронно-лучевой установки.

В качестве механических насосов с максимальным давлением 0,1-10 Па, на практике применяются шиберные или золотниковые насосы и агрегаты на их основе. В их составе также используются двухроторные насосы. В случае необходимости создания высокого вакуума, применяют высоковакуумные паромасляные или турбомолекулярные насосы.

Система управления электронно-лучевой установкой

Система управления должна обеспечивать выполнение следующих задач:

1. Программное управление функционированием всех систем установки.

2. Мониторинг и диагностику работы всех систем установки.

3. Контроль и управление положением электронного луча по отношению к сварному стыку.

4. Контроль и управление пространственными, энергетическими и временными характеристиками электронного луча.

5. В случае работы установки в составе гибкой производственной системы – обеспечивать связь с системой управления более высокого уровня.

Элементарной базой системы управления является микропроцессор. Всё программное управление может осуществляться одним достаточно мощным компьютером, либо системой компьютеров, среди которых есть центральный и местные микропроцессоры, на которых выполняется локальное управление одним, или несколькими устройствами.

Дефекты сварных швов при электронно-лучевой сварке

Наиболее характерными дефектами при электронно-лучевой сварке с несквозным проплавлением являются не заполненные металлом полости, размером 5-10мм и периодическое несплавление корня шва.

Возникают дефекты из-за изменения глубины проплавления. Глубина проплавления может быть различной при одной и той же удельной мощности электронного луча и зависит она от скорости сварки. Чем меньше скорость сварки, тем больше глубина проплавления.

На рисунке сбоку показано формирование полости внутри сварного шва в сварочном канале. При уменьшении скорости сварки глубина канала увеличивается, и на выходе из канала возникает вероятность его захлопывание жидким металлом и образование полости в металле шва.

Формирование периодических дефектов в корне шва в виде несплавлений, амплитуда которых может достигать порядка 3-4мм, объясняется периодическими колебаниями жидкого металла в сварочной ванне и связанным с этими колебаниями периодическим перемыканием (закупориванием) канала.

Во время закупоривания энергия луча некоторое время тратится на "сверление" слоя жидкого металла, т.е. выполняется работа по формированию некоторой доли глубины канала, что реально приводит к уменьшению глубины канала именно на эту долю.

Характерными дефектами электронно-лучевой сварки также являются отклонение канала проплавления от линии стыка кромок. Происходит это из-за отклонения электронного луча по причине воздействия на него магнитного поля. Это явление наблюдается при сварке сталей с остаточной намагниченностью. Для предотвращения подобного дефекта свариваемые изделия размагничивают до начала сварки.

Видео: Электронно-лучевая сварка

Электронно-лучевая сварка — это надежный способ соединения тугоплавких материалов с разной температурой плавления, сокращенно ЭЛС. Технология развивается с середины прошлого века и с успехом используется в авиационной, космической промышленности. Там, где необходимо особо точное и крепкое соединение компонентов.

Описание технологии

В основе электронно лучевой технологии сварки лежит использование механической энергии электронов, которую создает электронная пушка. Скорость электронов в магнитном поле пушки прямо зависит от ускоряющего напряжения. От мощности энергии пучка и плотности свариваемого материала зависит глубина проникновения луча. При воздействии пучка с материалом кинетическая энергия электронов переходит в тепловую. В это время происходит создание вторичных электронов и выделение рентгеновского и теплового излучений. Чем меньше диаметр пучка, тем больше его удельная мощность.

Читайте также:  Резак для резьбы по дереву своими руками

Управляя мощностью луча и длительностью облучения, можно выполнять множество разных технологических операций. От очистки поверхности материала до сварки и испарения. Все процессы происходят в вакуумной среде. В зависимости от производственной необходимости, вакуум в камере может быть от 10-2 до 10-6.

Для обеспечения непрерывного процесса используют сменные контейнеры. Пока происходит процесс сварки в одном контейнере, другой перезаряжают. Наличие двух контейнеров в несколько раз увеличивает производительность сварочной установки.

Электронно лучевая технология сварки позволяет не только надежно соединять разные материалы, но и делать напыление металлом или керамикой, создавать новые материалы. Например, можно создать материал с электропроводностью меди и крепостью стали.

Мат. часть процесса

Электронно лучевая сварка — это технологически сложный процесс, предъявляющий высокие требования к оборудованию. Установки отличаются производительностью, мощностью, управлением и объемом, но неизменно имеют в составе:

  • электронную пушку, которых может быть несколько;
  • вакуумную камеру;
  • блок управления;
  • смотровое окно для наблюдения за процессом (или монитор).

В электронно лучевой пушке для сварки формируется поток электронов, который производится катодом, подогреваемым спиралью. Около катода расположены дополнительные электроды, которые предварительно фокусируют электроны, формируя луч. На катод подается отрицательное напряжение. На ускоряющий электрод, размещенный на расстоянии нескольких сантиметров от катода, прикладывается положительное напряжение. Высокая разность потенциалов разгоняет электроны до скорости выше 100 000 км/с. В связи с тем, что электроны имеют свойство взаимно отталкиваться, их необходимо сфокусировать электромагнитной фокусирующей системой. Для точного управления лучом в электроннолучевой пушке установлена электромагнитная отклоняющая система.

Все процессы происходят в вакуумной камере. Безвоздушная среда:

  • уменьшает потери энергии электронов от ударов об молекулы воздуха;
  • почти полностью снижается вероятность возникновения оксидной пленки на свариваемых материалах;
  • предотвращает образование дугового разряда.

Для сварки может применяться постоянное или импульсное напряжение с частотой 100-500 Гц. Использовать импульсное напряжение эффективнее, особенно при варке легкоиспаряющихся металлов: алюминий или магний. Энергия луча не тратится на ионизацию паров.

При правильно выборе частоты и скважности колебаний можно сваривать тонкие листы.

Виды сварочных лучевых установок

Электронно лучевые установки бывают камерными (обрабатываемые изделия помещаются целиком в камеру) и бескамерные (вакуум создается локально, только в месте сварки).

По величине рабочего ускоряющего напряжения установки делятся на:

  • низковольтные (10-30 кВ);
  • средние (40-60 кВ);
  • высоковольтные (100-200 кВ).

Промышленность производит универсальные установки и специализированные. Универсальные системы можно применять для ремонтной и экспериментальной сварки изделий. Специализированные системы настраиваются на изготовление однотипных деталей.

Системы могут применяться не только для сварки металлов, в том числе тугоплавких, но и для обработки керамики, стекла, алмазов и других материалов. Установки можно использовать для:

Некоторые агрегаты оснащаются механизмом горизонтального вращения для обработки деталей трубчатой формы.

Современные установки отличаются особой точностью позиционирования луча, поэтому они с успехом используется в микроэлектронике. Например, аппарат MEBW-60, который производит предприятие Focus, может сваривать детали из нержавеющей стали толщиной от 0,02 мм. Максимальная толщина стыка до 12 мм.

Использование сварки в промышленности

Расширение использования ЭЛС в промышленности продолжается. Несмотря на некоторые недостатки, как необходимость работы в вакууме и образование в некоторых случаях полостей в теле шва, ЭЛС остается наиболее экономичным и точным способом сварки. Эффективность КПД при электронно лучевой сварке составляет 85-95 %. Это на порядок выше, чем у дуговой сварки.

Без электроннолучевой сварки не обойтись во время обработки:

  • активных металлов;
  • термоупрочненных материалов;
  • деталей ответственного назначения;
  • тугоплавких металлов,
  • изделий из керамики, камня.

Метод лучевой сварки используется и для производства в металлургии. Титан выплавляется из титановой губки при помощи электронно лучевых пушек.

Японские строители атомных станций применяют лучевую сварку для соединения аустенитной нержавеющей стали, используемой в активной части реактора, используют электронно-лучевые установки. Исследования показали, что качество сварного шва, полученного лучевым способом, по многим показателям превосходит шов дуговой сварки.

ЭЛС широко применяются в электронной промышленности. С ее помощью герметизируют микросхемы и полупроводниковые приборы. Температура нагрева изделия не превышает 200 градусов. Сварочный аппарат ЭЛУМС-25/0,5, разработанный в НПО «Орион», может приваривать золотые проводники микросборок диаметром 5 мкм.

Наиболее мощные и большие установки применяются в авиационной промышленности. Объем камер составляет около 1500 кубических метров.

В последнее время, после некоторого спада интереса к электронно-лучевой сварке, из-за общего кризиса в экономике, активизировались работы по производству и разработке новых технологий ЭЛС. Если вы специалист в этой сфере, и вам есть что рассказать, добавить или поспорить по теме, высказывайтесь в блоке комментариев.

Электронно-лучевая сварка (она же электроннолучевая, электронно лучевая сварка, ЭЛС) — это довольно быстро развивающийся вид сварки. С его помощью можно сварить практически все: и сплавы высокой прочности, и химически активные металлы, и тугоплавкие материалы. Словом, сфера применения очень большая.

В этой статье мы подробно расскажем, что такое ЭЛС сварка, какие есть достоинства и недостатки у такой технологии, и какие особенности нужно учитывать.

Общая информация

Электронно-лучевая сварка — метод сварки, в основе которого лежит применение луча. Луч выделяет тепло, которое формируется в результате столкновения пучка заряженных частиц. Технология непростая, но в ней все же лучше разобраться. Поскольку ЭЛС сварка получила широкое распространение во многих сферах, начиная от микроэлектроники заканчивая оптикой.

Данная технология просто не могла ни появиться. Существовала потребность сварки тугоплавких металлов, а добиться хорошего качества швов просто не получалось. Классические сварочные технологии просто не могли обеспечить должный уровень качества. Для решения этой проблемы была изобретена электронно-лучевая сварка, которая концентрирует тепло в одной точке, при этом сварочная зона остается защищенной.

Читайте также:  Экономная упаковка в паллеты

Технология

Перейдем к описанию технологии ЭЛС сварки. Итак, ключевой элемент — это луч, который генерирует электронная пушка. Плотность энергии в таком луче высока, но ее недостаточно для качественной сварки.

Чтобы исправить эту проблему электроны нужно сконцентрировать в магнитной линзе. На рисунке ниже линза обозначена цифрой 6. Далее электроны, находясь в подвижном состоянии, фокусируются в плотный световой пучок и ударяются о деталь (на картинке обозначена цифрой 1). За счет столкновения электроны тормозятся, и их энергия превращается в тепло. Тепло, в свою очередь, настолько мощное, что быстро нагревает металл до высокой температуры.

В конструкции предусмотрена магнитная отклоняющая система (обозначена цифрой 7). С ее помощью удается контролировать перемещение электронного луча по детали. Таким образом удается добиться точного положения луча, а значит сформировать шов в том месте, где это необходимо.

Когда электроны сталкиваются с молекулами кислорода, теряется огромное количество кинетической энергии. К тому же катод нуждается в дополнительной тепловой защите. Чтобы решить эти задачи в пушке создают вакуум. В результате энергия луча концентрируется строго в одной точке, а площадь нагрева минимальная. Из-за этого металл не деформируется при сварке. Это очень важно при сварке тонких металлов, особенно если деталь маленького размера.

Технология электронно лучевой сварки не простая, но важно понимать ее сущность. Чтобы четко осознавать, какой результат вы хотите получить. Ведь вам придется самому настраивать оборудование, фокусировку и мощность луча.

Особенности

Поскольку технология не самая простая, ее сопровождают некоторые нюансы, которые нужно учесть для полного понимания сути. Первый нюанс заключается в том, что вся сварка происходит в среде вакуума. От этого поверхность деталей идеально чистая. И второй нюанс — детали нагреваются до крайне высоких температур. В итоге мы получаем шов минимальной толщины, который при этом еще и быстро формируется. Это очень хорошо.

Благодаря этим особенностям ЭЛС сварку можно применять при сварке самых разнообразных металлов. У двух деталей может быть разная толщина, состав и даже температура плавления. Шов все равно получится качественным. Минимальная толщина для сварки составляет 0,02 миллиметра. А максимальная — 100 миллиметров. Диапазон очень большой, можно варить большинство деталей. Это все, что вам нужно учесть.

Достоинства и недостатки

Сварка электронная с применением луча имеет несколько весомых плюсов, благодаря которым она и получила свое широкое распространение. Прежде всего, детали при сварке не коробятся, поскольку на деталь воздействует малое количество тепла. В среднем оно в 5 раз меньше, чем при других технологиях сварки.

Второе достоинство — это большие возможности. Вы можете сварить любые металлы и даже не металлы. Сварка керамики с вольфрамом? Пожалуйста! К тому же, можно настроить фокусировку луча и нагреть зону диаметром менее 1 миллиметра. Это впечатляет. Можно сварить детали практически любого размера.

Еще один плюс — это высокое качество шва. И не важно, что вы варите: обычную сталь или химически активные металлы вроде титана. В любом случае, качество соединения вас приятно удивит. А порой благодаря ЭЛС сварке удается достичь и улучшения характеристик металла. Вы также можете сварить любые сплавы, в том числе стойкие к коррозии. Возможности безграничны!

ЭЛС очень экономичная, поскольку потребляется мало электроэнергии. К тому же, технология универсальна и позволяет варить любые металлы. Вы также можете не разделывать кромки, если у вас нет такой возможности.

Что ж, достоинства весомые. Но что насчет недостатков? И без них не обошлось. Например, при сварке металлов с высокими теплопроводными свойствами велика вероятность образования отверстий в корне шва. Это влияет на прочность сварного соединения. И влияет негативно.

Также применение электро-лучевой сварки не всегда оправдано. Она незаменима при работе в труднодоступных местах, но если говорить о сварке в заводских условиях, то достоиснтва не всегда оправдывают себя.

Оборудование

На сегодняшний день электронно-лучевое оборудование производится как у нас, так и за рубежом. Практически все модели оснащены пушками с косвенным или прямым каналом катодов. В целом, отечественная продукция мало в чем уступает зарубежной, при этом стоит дешевле. Да, у нее не такой футуристичный дизайн, но она справляется со всеми задачами. А это самое главное.

Существуют модели, у которых лучевые пушки располагаются в камере. С помощью таких установок можно выполнять сварку лучом со сложной траекторией движения. Во всех современных моделях используются компьютерные технологии, так что вероятность человеческого фактора крайне мала. Многие процессы вообще проходят в автоматическом режиме, оператор может не присутствовать на рабочем месте.

Несмотря на всю технологичность, сварочное оборудование для ЭЛС сварки довольно просто обслуживается и не требует долгого обучения сотрудников. Нужно один раз запрограммировать установку и проследить, чтобы луч фокусировался в нужном месте. Единственное, что затем придется делать каждый раз — это регулировать фокусировку или изменять мощность самого луча. Больше не нужно никаких настроек.

Вместо заключения

Установка электронно лучевой сварки хоть и стоит недешево, но с ее помощью можно сварить даже металл с керамикой, не говоря уже о простой сварке двух металлических деталей. Да и сама ЭЛС сварка очень технологична и шагает в ногу со временем. При этом сварочный процесс очень экономичный, не требует больших затрат.

Вы когда-нибудь сталкивались с электронно-лучевой сваркой? Может быть вы мастер высокого уровня и готовы поделиться своим опытом? Добро пожаловать в комментарии.