Коррозия чугуна в воде

С другой стороны, предположение о давлении водорода не является, вероятно, необходимым фактором для объяснения механизма растрескивания сталей. Паркинс показал, что устойчивые стали могут подвергаться коррозионному растрескиванию в кипящих растворах нитратов после предварительного отжига, в результате которого происходят структурные изменения около границ зерен сплава, аналогичные изменениям, вызывающим напряжения (или объемные изменения при снятии таких напряжений). Исследования, проведенные Паркинсом с помощью рентгеновских лучей, обнаружили наличие внутренних напряжений в сплаве и зависимость между этими напряжениями и временем до разрушения. Возможно, что роль анодного разрушения (которое поддерживается за счет катодного восстановления нитратов на наружной поверхности) заключается в простом нарушении связей, задерживающих развитие трещины.

4.3 Коррозия чугунов

4.3.1 Серый чугун

Серый чугун не является коррозионностойким материалом. В сильных и слабых растворах кислот скорость его коррозии высокая. В атмосфере, даже обогащенный сернистым газом, скорость коррозии (v, мм/г) серого чугуна сравнительно невелика и находится на уровне листовой стали:

Серые чугуны, легированные хромом (0,4-0,8%) и никелем (0,35-1,0%), являются щелочестойкими при температурах до 323К. На коррозионную стойкость серого чугуна больше влияет плотность его в отливках, чем химический состав и структура. Большую плотность имеет серый чугун с содержанием кремния менее 1,5%. Меньше скорость почвенной коррозии у труб из серого чугуна, отлитых центробежным способом и имеющих большую плотность, чем отлитых в стационарных формах.

Добавка до 0,6% меди повышает коррозионную стойкость серого чугуна в ряде слабоагрессивных сред. Медь легирует феррит и повышает его электродный потенциал. Легирование медью (0,3-0,4%) повышает сопротивление атмосферной коррозии и коррозии в уксусной кислоте. В растворах солей и щелочей медистые чугуны не обладают повышенной стойкостью. Добавка до 0,2% олова повышает стойкость чугуна в 10-, 20%-ных кислотах: в 1,8-2 раза (азотная кислота); в 2-6 раз (серная кислота); в 1,3-2,3 раза (соляная кислота); в 2,5-3 раза (уксусная кислота) соответственно. Легирование сурьмой и медью в соотношении 1:2 (в сумме до 1%) повышает стойкость серого чугуна в ряде кислот, и особенно в соляной. В таблице 4.2 приведены данные о коррозии серого чугуна в сравнении с другими сплавами.

Чугуны, содержащие в больших количествах углерод в связанном виде, являются более коррозионно-стойкими, что объясняется меньшей разностью потенциалов пары феррит-цементит по сравнению с парой феррит-графит. С появлением в структуре графита коррозионная стойкость падает. Крупный равномерно распределенный графит дает меньшее количество микропар, чем дисперсный. Однако следует учитывать возникающую при крупных включениях пористость, что способствует проникновению электролита вдоль графитовых пластинок.

При воздействии электролита на чугунные отливки создаются условия для образования микропор, в которых графит или цементит являются катодом, а феррит анодом.

Таблица 4.2 – Коррозия различных сплавов в различных средах

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306
Читайте также:  Станок с циркулярной пилой по дереву

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Коррозия – чугун

Скорость коррозии чугуна в первые месяцы равна 160 – 180 г / м2 год [91, 92], в дальнейшем она значительно падает. Через 100 месяцев скорость коррозии снижается до 60 г / л 2 год и после 72U месяцев – до 2 – 3 г / ж2 год. Уменьшение стечением времени скорости коррозии объясняется защитным действием образовавшейся ржавчины. Вначале, когда слой продуктов коррозии еще невелик и недостаточно плотен, коррозия идет ускоренно, почти пропорционально квадрату времени, прошедшему от начала коррозии. В более поздних стадиях процесса, когда образуется толстая и плотная пленка продуктов коррозии, разрушение идет замедленно. Сухой климат действует слабее влажного. [47]

В концентрированных растворах серной кислоты на поверхности чугуна образуются труднорастворимые сульфаты и оксиды железа, которые надежно защищают его от дальнейшего разрушения. Максимальная скорость коррозии чугуна наблюдается в серной кислоте концентрации 50 % и ниже. [48]

Для работы в агрессивных средах применяют специальные легированные чугуны ( см. ниже), обладающие высоким электродным потенциалом, способностью создавать пассивирующую пленку и пониженным количеством микрогальванических пар. В водопроводной воде коррозии чугуна возрастает до 1800 г / м2 в год; в морской воде она вдвое больше, чем в водопроводной. [49]

Никель, уплотняя структуру чугуна, увеличивает одновременно степень ее дисперсности; поэтому никель благотворно влияет на коррозионную стойкость чугуна в кислых средах при введении его не свыше 0 5 – 0 8 %, когда сорбитизирующее действие его незначительно ( фиг. Влияние никеля на коррозию чугуна в щелочах видно из фиг. [50]

При углекислотной коррозии чугуна разрушается главным образом феррит, в результате чего чугун обогащается графитом и становится мягким. Такое явление называется губчатой коррозией чугуна . [51]

Менее прочный остов образуется в случае шаровидного графита. В ряде случаев при коррозии чугуна в кислых средах водород не выделяется, а, видимо, адсорбируется графитом. В продуктах коррозии находится до 10 % углерода. [52]

В данном разделе обсуждаются свойства в основном первой группы материалов. Более того, так как коррозия чугуна рассматривается в разделе 1.6, а сварочного железа в настоящее время производится мало, то практически все внимание будет сосредоточено на коррозии обычных углеродистых сталей, широко используемых на практике. Коррозия низколегированных и нержавеющих сталей рассмотрена в разделах 1.2 и 1.3 соответственно. [53]

Влияние содержания связанного углерода на коррозию чугуна представлено на фиг. [54]

Брегмана [26], И. Н. Путиловой, С. А. Балезина [7], В. Ф. Негреева [11] и других исследователей также показано, что в аналогичных системах маслорас-творимые ингибиторы коррозии значительно более эффективны, чем водорастворимые. Аналогичные результаты получены нами при исследовании коррозии чугуна , стали, алюминия и меди в смеси нефти и воды. [56]

Корро́зия, ржавление, ржа — это самопроизвольное разрушение металлов и сплавов в результате химического, электрохимического или физико-химического взаимодействия с окружающей средой. Разрушение по физическим причинам не является коррозией, а характеризуется понятиями «эрозия», «истирание», «износ». Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде.

Пример — кислородная коррозия железа в воде:

4 F e + 6 H 2 O + 3 O 2 → 4 F e ( O H ) 3 <displaystyle <
m <4Fe+6H_<2>O+3O_<2>
ightarrow 4Fe(OH)_<3>>>>

Гидроксид железа Fe(OH)3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление» — коррозия железа и его сплавов с образованием продуктов коррозии, состоящих из гидратированных остатков железа.

На неметаллические материалы определение коррозии не распространяется. Применительно к полимерам существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия.

Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Содержание

Классификация видов коррозии [ править | править код ]

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии [1] .

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

  • газовая коррозия;
  • атмосферная коррозия;
  • коррозия в неэлектролитах;
  • коррозия в электролитах;
  • подземная коррозия;
  • биокоррозия;
  • коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

По характеру разрушения:

  • сплошная коррозия, охватывающая всю поверхность:
  • равномерная;
  • неравномерная;
  • избирательная;
Читайте также:  Приспособление к болгарке для резки прутка труб
  • локальная (местная) коррозия, охватывающая отдельные участки:
    • пятнами;
    • язвенная;
    • точечная;
    • сквозная;
    • межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).
    • Главная классификация производится по механизму протекания процесса. Различают два вида:

      • химическую коррозию;
      • электрохимическую коррозию.

      Коррозия неметаллических материалов [ править | править код ]

      По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

      Коррозия металлов [ править | править код ]

      Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой [2] . Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение».

      Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

      Типы коррозии [ править | править код ]

      Различают 4 основных вида коррозии: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

      Электрохимическая коррозия [ править | править код ]

      Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. При электрохимической коррозии всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

      При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокс-потенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

      Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки — цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

      Примером крупномасштабной электрохимической коррозии может служить происшествие, случившееся в декабре 1967 года с норвежским рудовозом «Анатина» [3] (англ. Anatina ), следовавшим из Кипра в Осаку. Налетевший в Тихом океане тайфун привёл к попаданию в трюмы солёной воды и образованию большой гальванической пары: медного концентрата со стальным корпусом судна, который вскоре размягчился, и судно подало сигнал бедствия. Экипаж был спасён подоспевшим немецким судном, а сама «Анатина» еле-еле добралась до порта [4] [5] .

      Водородная и кислородная коррозия

      Если происходит восстановление ионов H3O + или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:

      2 H 3 O + + 2 e ¯ → 2 H 2 O + H 2 <displaystyle <
      m <2H_<3>O^<+>+2<ar >
      ightarrow 2H_<2>O+H_<2>>>>

      2 H 2 O + 2 e ¯ → 2 O H − + H 2 <displaystyle <
      m <2H_<2>O+2<ar >
      ightarrow 2OH^<->+H_<2>>>>

      Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:

      O 2 + 2 H 2 O + 4 e ¯ → 4 O H − <displaystyle <
      m <2>+2H_<2>O+4<ar >
      ightarrow 4OH^<->>>>

      Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура его поверхности неоднородна (например, межкристаллитная коррозия).

      Химическая коррозия [ править | править код ]

      Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

      4 F e + 3 O 2 → 2 F e 2 O 3 <displaystyle <
      m <4Fe+3O_<2>
      ightarrow 2Fe_<2>O_<3>>>>

      Виды коррозии [ править | править код ]

      • Послойная коррозия
      • Нитевидная коррозия
      • Структурная коррозия
      • Межкристаллитная коррозия
      • Избирательная коррозия
      • Графитизация чугуна
      • Обесцинкование
      • Щелевая коррозия
      • Ножевая коррозия
      • Коррозионная язва
      • Коррозионное растрескивание
      • Коррозия под напряжением
      • Коррозионная усталость
      • Предел коррозионной усталости
      • Коррозионная хрупкость

      Борьба с коррозией [ править | править код ]

      Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

      Читайте также:  Хорошие электрические бритвы отзывы

      Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материалов и способом их нанесения [6] . Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка.

      Обычно выделяют три направления методов защиты от коррозии:

      Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы.

      При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали — более 12 процентов.

      При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

      Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод — использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

      Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn 2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии — применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.

      Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование).

      Газотермическое напыление [ править | править код ]

      Для борьбы с коррозией используют также методы газотермического напыления. С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, например цинк, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до агрегатов нефтедобывающих компаний [7] .

      Термодиффузионное цинковое покрытие [ править | править код ]

      Для эксплуатации металлоизделий в агрессивных средах необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллидных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий [8] .

      Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375—850 °C), или с использованием разрежения (вакуума) — при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01—1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 — 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

      Кадмирование [ править | править код ]

      Покрытие стальных деталей кадмием производится методами, аналогичными цинкованию, но даёт более сильную защиту, особенно в морской воде. Применяется значительно реже из-за значительной токсичности кадмия и его дороговизны. Также покрывают тонким слоем оксида меди, что предотвращает дальнейшее размножение коррозии.