Поверхности многих деталей имеют различные уклоны. Плоские поверхности деталей, расположенные наклонно, на чертежах часто обозначаются величиной уклона. В задании «Проекционное черчение» именно так и задано ребро жесткости или тонкая стенка детали.
Уклон характеризует отклонение прямой линии или плоскости от горизонтального или вертикального направления. Для построения уклона 1:1 на сторонах прямого угла откладывают произвольные, но равные единичные отрезки. Очевидно, что уклон 1:1 соответствует углу 45º. Как видно из рис. 34,а, уклон есть отношение катетов: противолежащего к прилежащему, что может быть определено как тангенс угла наклона α прямой. Тогда, чтобы, например, построить уклон 1:7 (рис. 34,б), в направлении уклона откладывают семь отрезков, а в перпендикулярном направлении — один отрезок.
Величину наклона обозначают на чертеже в соответствии с ГОСТ 2.307-68 условным знаком с числовым значением. Уклон указывают с помощью линии-выноски, на полке которой наносят знак уклона и его величину. Расположение знака уклона должно соответствовать определенной линии: одна из прямых знака должна быть горизонтальной, а другая — наклонена примерно под углом 30º в ту же сторону, что и сама линия уклона (рис. 34,б). Вершина знака должна быть направлена в сторону уклона. Знак и размерное число располагают параллельно направлению, по отношению к которому задан уклон. На чертеже уклоны указывают либо в процентах, либо дробью в виде отношения двух чисел.
| |
(а) | (б) |
Многие детали содержат коническую поверхность. На чертежах конических деталей размеры могут быть проставлены различно: диаметры большего и меньшего оснований усеченного конуса и его длина, угол конуса или величина конусности.
Конусность — это отношение диаметра основания конуса к его высоте. Для усеченного конуса это отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними (рис. 35,а). Конусность равна удвоенному уклону образующей конуса к его оси. Так же как и уклон, она обозначается условным знаком, проставляемым перед её числовым обозначением. Условный знак изображается в виде треугольника с вершиной, направленной в сторону вершины конуса. Конусность (согласно ГОСТ 2.307-68) задается на чертежах отношением двух чисел (рис. 35), процентами или десятичной дробью.
| |
(б) | |
| |
(а) | (в) |
Знак и цифры, указывающие величину конусности, располагают на чертежах параллельно оси конического элемента. Они могут быть расположены над осью, как на рис. 35,б, или полке, как на рис. 35,в. В последнем случае полка соединяется с образующей конуса с помощью линии-выноски, заканчивающейся стрелкой. В конических соединениях, показанных на рис. 36, указание конусности обязательно, так как задание размеров D, d, H из-за трудностей изготовления применяют редко. При построении очертаний конуса, задаваемого конусностью, высотой и одним из диаметров, второй диаметр вычисляют по формуле, приведенной на рис. 35,а. Конусности общего назначения стандартизованы ГОСТ 8593-81.
2. Пример выполнения РГР
На рис. 37 приведен пример варианта задания на выполнение расчетно-графической работы «Проекционное черчение», а также наглядное изображение заданной детали с вырезом.
Выполненный по этому заданию чертеж детали в трех проекциях с правильно оформленными размерами показан на рис. 38. Этот пример поможет студентам разобраться в их задании, начать выполнение графической работы и избежать многочисленных ошибок при ее оформлении.
Напомним, что в задании имеются только две проекции детали, поэтому и размеры распределены на двух изображениях. Однако при оформлении чертежа следует наносить размеры равномерно на всех трех проекциях.
В заключение следует отметить, что количество изображений детали (видов, разрезов, сечений) должно быть наименьшим, но обеспечивающим полное представление о её конструкции при применении установленных всоответствующих стандартах условных обозначений, знаков и надписей.
Литература
1. Попова Г.Н., Алексеева С.Ю. Машиностроительное черчение: Справочник. -Л.: Машиностроение, Ленингр. отделение, 1986.
2. Левицкий В.С. Машиностроительное черчение. — М.: Высшая школа, 1988.
3. Гордон В.О., Семенцов-Огиевский Н.А. Курс начертательной геометрии. — М.: Наука, 1994.
4. Фролов С.А. Начертательная геометрия. — М.: Машиностроение, 1978.
Приложение. Варианты задания на расчетно-графическую работу
Варианты задания на расчетно-графическую работу по теме «Проекционное черчение» приведены в табл. П1. Правила выбора варианта задания определяются преподавателем.
Таблица П1. Варианты задания на РГР по теме «Проекционное черчение»
№ вар. | № рис. | а | b | с | № вар. | № рис. | а | b | с |
П1 | П7 | ||||||||
П2 | П8 | ||||||||
П3 | П9 | ||||||||
П4 | П10 | ||||||||
П5 | П11 | ||||||||
П6 | П12 | ||||||||
П7 | П1 | ||||||||
П8 | П2 | ||||||||
П9 | П3 | ||||||||
П10 | П4 | ||||||||
П11 | П5 | ||||||||
П12 | П6 | ||||||||
П1 | П7 | ||||||||
П2 | П8 | ||||||||
П3 | П9 | ||||||||
П4 | П10 | ||||||||
П5 | П11 | ||||||||
П6 | П12 |
| | |
Рис. П1 | Рис. П2 | Рис. П3 |
| | |
Рис. П4 | Рис. П5 | Рис. П6 |
| | |
Рис. П7 | Рис. П8 | Рис. П9 |
| | |
Рис. П10 | Рис. П11 | Рис. П12 |
[1] Для вертикальных разрезов указанное требование должно выполняться также в случаях, если секущая плоскость не параллельна фронтальной или профильной плоскости проекции
[2] Условие симметричности изображений необходимо, но не достаточно для совмещения половины вида и половины разреза (подробнее см. подраздел 1.2.3).
Дата добавления: 2014-11-06 ; Просмотров: 3188 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Уклоном называют величину, характеризующую наклон одной прямой линии относительно другой прямой. Уклон численно равен тангенсу угла φ
Рис. 4.7. Построение уклона
Уклон может быть задан на чертеже либо отношением двух чисел, либо в процентах. Линию заданного уклона строят как гипотенузу прямоугольного треугольника, тангенс острого угла которого нам известен.
На рис. 4.7, а и б показаны случаи построения прямых, когда уклон их задан отношением двух чисел и в процентах. На рис. 4.7, в показаны варианты практического применения построений линий заданного уклона. Перед числовым значением уклона ставится знак уклона , острый угол которого направлен в сторону уклона.
Конусностью называется отношение диаметра основания конуса к его высоте, либо отношение разности диаметров оснований усечённого конуса к его высоте (рис.4.8). Как видно из чертежа, числовое значение конусности в два раза больше значения уклона образующей конуса к его оси. На рис. 4.8 показаны примеры построения конусности. Для обозначения конусности на чертеже применяют знак , острый угол которого направлен в сторону конусности. Значение конусности проставляется либо на полке линии выноски, либо над осевой линией.
Рис.4.8. Построение конусности
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9825 — | 7406 —
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
1. При помощи ЧП . Повернув головку на заданное число градусов, можно построить любой угол.
2. При помощи транспортира. Приложив центр транспортира к заданной вершине А искомого угла и отметив около шкалы транспортира нулевую точку и точку, соответствующую заданному числу градусов, соединяем обе эти точки с точкой А.
3. При помощи рейсшины и угольников. На Чертеже-№110, а показаны приемы построения углов в 15°, 30°, 45°, 60°, 75° и 90° и дополнительные к ним до 180°.
4. При помощи циркуля и линейки. Таким приемом удобно строить углы, показанные на Чертеже — №110, б.
Деление углов на равные части
Деление произвольного угла пополам. Наиболее удобным приемом деления произвольного угла пополам является деление при помощи циркуля и линейки; последовательность построения биссектрисы угла показана на Чертеже-№111.
Деление прямого угла на три равные части:
1. При помощи ЧП. На Чертеже — №112, а показано, что вдоль кромки линейки, повернутой на 30° . проведен из вершины А луч, а вдоль кромки линейки, повернутой на угол 60° , проведен из вершины А второй луч; получились три угла по 30° .
2. При помощи транспортира. Приложив центр транспортира к вершине А и деление 90° совместив с вертикальной стороной данного прямого угла, намечаем точки против делений в 30° и 60° и соединяем их с вершиной А .
3. При помощи рейсшины и угольника в 30° — 60° — 90° .
На Чертеже — №112, б показано проведение из вершины А луча, наклоненного на угол 60° , и проведение луча, наклоненного на угол 30° .
4. При помощи циркуля и линейки. Построение сводится к проведению двух засечек D и Е и лучей через них из вершины А ; радиус R берется произвольный. Порядок построения показан цифрами в кружках.
Уклоны и конусность
Уклоны. Уклоном прямой по отношению к какой-либо другой прямой называется величина се наклона к этой прямой, выраженная через тангенс угла между ними. Следовательно, уклоном прямой АС относительно прямой АВ называется отношение i = h ÷ l = tg α .
Уклоны обычно выражают отношением двух чисел, например 1 : 6 .
Как видно из чертежа — №113, а, уклон линии выявляется отношением величин двух катетов прямоугольного треугольника ABC , один из которых, например АВ , имеет направление линии, по отношению к которой задан уклон; гипотенузой является отрезок АС прямой заданного уклона. При обозначении уклона перед размерным числом пишут слово «уклон» параллельно линии, по отношению к которой он задан.
Взамен слова «уклон» допускается применять знак , вершина угла которого должна быть направлена в сторону уклона (чертеж — №113, в).
Этот знак рекомендуется применять, когда направление уклона неясно выражено.
Проведение через точку А прямой заданного уклона h : l (по отношению к горизонтальной линии). На чертеже — №113, г показаны приемы вспомогательных построений для проведения прямой заданного уклона через заданную точку А : из данной точки А проводят горизонтальный луч и на нем от точки А откладывают длину L (равную числовому значению делителя данного уклона) — получают точку К , через которую проводят вертикальную линию и на ней от точки К откладывают длину h (равную числовому значению делимого данного уклона) — получают точку В . Прямая, проведенная через точки А и В , будет иметь требуемый уклон. Построение можно начинать с проведения вертикального луча из точки А и откладывания на нем величины h .
На чертеже — №113, д показан пример применения уклонов на контуре прокатной стали.
УПРАЖНЕНИЕ 3
Начертить контур шаблона с применением построения уклона (чертеж-№113, е).
Конусность. Конусностью называется отношение диаметра D основания конуса к его высоте h . Перед размерным числом конусности следует писать знак >, вершина которого должна быть направлена в сторону вершины конуса (чертеж-№114, а).
Если на чертеже направление конусности выявлено вполне ясно, допускается взамен знака писать слово «конусность» (параллельно оси конуса).
Числовое значение конусности усеченного конуса определяют по формуле (D — d) ÷ L (чертеж-№114, б).
Определение конусности по чертежу и проведение наклонных линий — образующих конуса — согласно данному числовому значению конусности аналогично определению уклонов и проведению прямых заданного уклона.
На чертеже-№114,в показан пример применения построения конусности при изображении детали — пробки.
УПРАЖНЕНИЕ 4
Пример 1. Начертить изображение конической втулки С применением построений, указанных конусностей, согласно чертежу-№114, г.
Пример 2. Перечертить один из вариантов по заданным размерам с построением указанной конусности (чертеж-№114, д).
Угловые (пропорциональные) масштабы
Угловыми (пропорциональными) масштабами называют графически выраженные числовые масштабы, о которых было сказано (на стр. Масштабы и компоновка чертежей )
Угловые (пропорциональные) масштабы применяют для замены вычислений линейных размеров в том случае, когда чертеж надо выполнить с применением масштаба уменьшения или увеличения. Например, при выполнении чертежа контура пластины в масштабе 1 : 2,5 надо каждую линию предмета изобразить уменьшенной в 2,5 раза. Вычисление уменьшенных размеров каждой линии отнимает много времени. Вместо этого применяют угловой масштаб (чертеж-№115, а), т. е. прямоугольный треугольник (выполненный обычно на миллиметровой бумаге), вертикальный катет ВС которого относится к горизонтальному АС как 1 : 2,5 .
Для уменьшения линий чертежа (чертеж-№115,б) отмеряем разметочным циркулем размер стороны α и, отложив его от вершины А на горизонтальной стороне углового масштаба 1 : 2,5 поворачиваем циркуль вокруг правой иглы и берем по вертикальному направлению до гипотенузы размер α1 , который будет равен α ÷ 2,5
Этот размер переносим на проведенную из заранее намеченной точки К1 вертикальную линию. Из верхней конечной точки проводим вправо горизонтальный луч; на нем откладываем размер стороны b , уменьшенный в 2,5 раза, т. е. b1 (полученный аналогично размеру α1 ; из конечной точки проводим вниз вертикальную линию и на ней откладываем размер с1 и т. д. В результате получим чертеж данной фигуры, выполненный в масштабе 1 : 2,5 .
Чтобы не чертить каждый раз требуемый угловой масштаб, рекомендуется выполнить на миллиметровой бумаге общий угловой масштаб для уменьшений 1 : 2 ; 1 : 2,5 ; 1 : 4 ; 1 : 5 ; 1 : 10 , такой же, какой показан на чертеже-№115, в.