Если пружины соединены параллельно, то деформация всех пружин одинакова и равна λ (рис.2а), нагрузка же, действующая на каждую из пружин, различна: на первую пружину действует сила P1, на вторую P2, и т.д., причем P1+P2+…+Pn=P.
Поэтому
Или т.е. жесткость системы параллельно соединенных пружин Kc равна сумме жесткостей Ki отдельных пружин.
При последовательном соединении пружин (рис.2б) одинаковой для всех пружин является сила нагрузки P, а общая деформация λ складывается из
деформаций λ1, λ2,… ,λn, составляющих пружин.
или
Отсюда следует, что жесткость системы параллельно соединенных пружин больше жесткостей отдельных пружин, входящих в систему, а жесткость системы последовательно соединенных пружин, наоборот, меньше жесткостей пружин, составляющих эту систему.
Для определения внутренних силовых факторов в витке рассмотрим сечение пружины ( Рис.3).
При растяжении (или сжатии) винтовой цилиндрической пружины в любом поперечном сечении витка возникают крутящий и изгибающий моменты, поперечная и нормальная силы, но при малом угле подъёма винтовой оси проволоки напряжения и перемещения, вызываемые продольной силой и изгибающим моментом малы, и поэтому не учитываются.
Рассечем пружину плоскостью, перпендикулярной ее оси и рассмотрим равновесия отсеченной части пружины,
Из условия статического равновесия находим, что в поперечных сечениях пружины действуют внутренние силовые факторы в виде поперечного усилия Q=P и крутящего момента MKp=PDcp/2.
От действия усилия Q в поперечном сечении витка пружин возникают касательные напряжения сдвига (рис. 4а), которые равномерно распределены по сечению, площадью А. От действия крутящего момента MKp возникают касательные напряжения кручения (рис. 4б), суммируя напряжения, получаем эпюру суммарных напряжений (рис. 4в).
где τ1 — касательные напряжения сдвига
τ2 — касательные напряжения кручения
,
,
где Wp – полярный момент сопротивления сечения при кручении
Диаметр проволоки значительно меньше двух средних диаметров витка пружины, поэтому можно принять
Изменение продольных размеров (осадку) λ удобно определить энергетическим методом, приравнивая работу А приложенной силы Р и потенциальной энергии деформации U пружины. Работа внешних сил
.
Потенциальная энергия накапливается, в основном, за счет кручения прутка и поэтому может быть определена
Учитывая, что крутящий Мк=PD/2 и момент инерции Ip=πd4/32 по длине проволоки не изменяются, а длина проволоки l = πdn, получаем
Приравнивая A и U, находим
Таким образом, при определении напряжений и перемещений в цилиндрических пружинах учитывают только действие крутящего момента.
Основными материалами пружин являются высокопрочная специальная пружинная проволока I, II и III классов диаметром 0,2. 5 мм, а также высокоуглеродистые стали 65, 70, марганцовистая сталь 65Г, кремнистая сталь 60С2А, хромованадиевая сталь 50ХФА и др.
Пружины, предназначенные для работы в химически активной среде, изготовляют из фосфористых БрОФ 6-0,15, БрОФ 4-0,2 и бериллиевой БрБ2 бронз.
3. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
Внешний вид установки представлен на рис. 5. В состав установки входят:
силовая рама с основанием (6) и (9), элементами горизонтирования (10), кронштейнами (11) и двумя траверсами, выполненных в виде подвижной и неподвижной планок (5);нагрузочные устройства с двумя подвесами (7) и наборами съемных грузов (8);две витые цилиндрические пружины сжатия (1);
два индикатора часового типа (2), указатели (3) и стандартная измерительная линейка (4).
Сжимающая сила создается при помощи съемных грузов. Масса одного груза — I кг. Максимальное число грузов на одну пружину — 5. На каждой ступени нагружения фиксируется упругое перемещение (осадка) пружины. Представлены две системы измерений: одна приближенная — измерительная линейка, другая уточненная — индикаторы часового типа.
|
Рис. 5. Лабораторная установка МЗ
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8267 — | 7904 —
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
1. Проявление сил упругости и их природа
Как вы уже знаете из курса физики основной школы, силы упругости связаны с деформацией тел, то есть изменением их формы и (или) размеров.
Связанная с силами упругости деформация тел не всегда заметна (подробнее мы остановимся на этом ниже). По этой причине свойства сил упругости изучают обычно, используя для наглядности пружины: их деформация хорошо видна на глаз.
Подвесим к пружине груз (рис. 15.1, а). (Будем считать, что массой пружины можно пренебречь.) Пружина растянется, то есть деформируется.
На подвешенный груз действуют сила тяжести т и приложенная со стороны растянутой пружины сила упругости
упр (рис. 15.1, б). Она вызвана деформацией пружины.
Согласно третьему закону Ньютона на пружину со стороны груза действует такая же по модулю, но противоположно направленная сила (рис. 15.1, в). Эта сила – вес груза: ведь это сила, с которой тело растягивает вертикальный поднес (пружину).
Силы упр и
, с которыми груз и пружина взаимодействуют друг с другом, связаны третьим законом Ньютона и поэтому имеют одинаковую физическую природу. Следовательно, вес – это тоже сила упругости. (Действующая на пружину со стороны груза сила упругости (вес груза) обусловлена деформацией груза. Эта деформация незаметна, если грузом является гиря или брусок. Чтобы деформация груза стала тоже заметной, можно в качестве груза взять массивную пружину: мы увидим, что она растянется.) Действуя на пружину, вес груза растягивает ее, то есть является причиной ее деформации. (Во избежание недоразумений подчеркнем еще раз, что пружину, к которой подвешен груз, растягивает не приложенная к грузу сила тяжести груза, а приложенная к пружине со стороны груза сила упругости (вес груза).)
На этом примере мы видим, что силы упругости являются и следствием, и причиной упругой деформации тел:
– если тело деформировано, то со стороны этого тела действуют силы упругости (например, сила упр на рисунке 15.1, б);
– если к телу приложены силы упругости (например, сила на рисунке 15.1, в), то это тело деформируется.
? 1. Какие из изображенных на рисунке 15.1 сил
а) уравновешивают друг друга, если груз покоится?
б) имеют одинаковую физическую природу?
в) связаны третьим законом Ньютона?
г) перестанут быть равными по модулю, если груз будет двигаться с ускорением, направленным вверх или вниз?
Всегда ли деформация тела заметна? Как мы уже говорили, «коварная» особенность сил упругости состоит в том, что связанная с ними деформация тел далеко не всегда заметна.
Деформация стола, обусловленная весом лежащего на нем яблока, незаметна на глаз (рис. 15.2).
И тем не менее она есть: только благодаря силе упругости, возникшей вследствие деформации стола, он удерживает яблоко! Деформацию стола можно обнаружить с помощью остроумного опыта. На рисунке 15.2 белые линии схематически обозначают ход луча света, когда яблока на столе нет, а желтые линии – ход луча света, когда яблоко лежит на столе.
? 2. Рассмотрите рисунок 15.2 и объясните, благодаря чему деформацию стола удалось сделать заметной.
Некоторая опасность состоит в том, что, не заметив деформации, можно не заметить и связанной с ней силы упругости!
Так, в условиях некоторых задач фигурирует «нерастяжимая нить». Под этими словами подразумевают, что можно пренебречь только величиной деформации нити (увеличением ее длины), но нельзя пренебрегать силами упругости, приложенными к нити или действующими со стороны нити. На самом деле «абсолютно нерастяжимых нитей» нет: точные измерения показывают, что любая нить хоть немного, но растягивается.
Например, если в описанном выше опыте с грузом, подвешенным к пружине (см. рис. 15.1), заменить пружину «нерастяжимой нитью», то под весом груза нить растянется, хотя ее деформация и будет незаметной. А следовательно, будут присутствовать и все рассмотренные силы упругости. Роль силы упругости пружины будет играть сила натяжения нити, направленная вдоль нити.
? 3. Сделайте чертежи, соответствующие рисунку 15.1 (а, б, в), заменив пружину нерастяжимой нитью. Обозначьте на чертежах силы, действующие на нить и на груз.
? 4. Два человека тянут в противоположные стороны веревку с силой 100 Н каждый.
а) Чему равна сила натяжения веревки?
б) Изменится ли сила натяжения веревки, если один ее конец привязать к дереву, а за другой конец тянуть с силой 100 Н?
Природа сил упругости
Силы упругости обусловлены силами взаимодействия частиц, из которых состоит тело (молекул или атомов). Когда тело деформируют (изменяют его размеры или форму), расстояния между частицами изменяются. Вследствие этого между частицами возникают силы, стремящиеся вернуть тело в недеформированное состояние. Это и есть силы упругости.
2. Закон Гука
Будем подвешивать к пружине одинаковые гирьки. Мы заметим, что удлинение пружины пропорционально числу гирек (рис. 15.3).
Это означает, что деформация пружины прямо пропорциональна силе упругости.
Обозначим деформацию (удлинение) пружины
где l – длина деформированной пружины, а l0 – длина недеформированной пружины (рис. 15.4). Когда пружина растянута, x > 0, а проекция действующей со стороны пружины силы упругости Fx
? 6. Груз какой массы надо подвесить к пружине жесткостью 500 Н/м, чтобы удлинение пружины стало равным 3 см?
Важно отличать удлинение пружины x от ее длины l. Различие между ними показывает формула (1).
? 7. Когда к пружине подвешен груз массой 2 кг, ее длина равна 14 см, а когда подвешен груз массой 4 кг, длина пружины равна 16 см.
а) Чему равна жесткость пружины?
б) Чему равна длина недеформированной пружины?
3. Соединение пружин
Последовательное соединение
Возьмем одну пружину жесткостью k (рис, 15.6, а). Если растягивать ее силой (рис. 15.6, б), ее удлинение выражается формулой
Возьмем теперь вторую такую же пружину и соединим пружины, как показано на рисунке 15.6, в. В таком случае говорят, что пружины соединены последовательно.
Найдем жесткость kпосл системы из двух последовательно соединенных пружин.
Если растягивать систему пружин силой , то сила упругости каждой пружины будет равна по модулю F. Общее же удлинение системы пружин будет равно 2x, потому что каждая пружина удлинится на x (рис. 15.6, г).
где k – жесткость одной пружины.
Итак, жесткость системы из двух одинаковых последовательно соединенных пружин в 2 раза меньше, чем жесткость каждой из них.
Если последовательно соединить пружины с разной жесткостью, то силы упругости пружин будут одинаковы. А общее удлинение системы пружин равно сумме удлинений пружин, каждое из которых можно рассчитать с помощью закона Гука.
? 8. Докажите, что при последовательном соединении двух пружин
1/kпосл = 1/k1 + 1/k2, (4)
где k1 и k2 – жесткости пружин.
? 9. Чему равна жесткость системы двух последовательно соединенных пружин жесткостью 200 Н/м и 50 Н/м?
В этом примере жесткость системы двух последовательно соединенных пружин оказалась меньше, чем жесткость каждой пружины. Всегда ли это так?
? 10. Докажите, что жесткость системы двух последовательно соединенных пружин меньше жесткости любой из пружин, образующих систему.
Параллельное соединение
На рисунке 15.7 слева изображены параллельно соединенные одинаковые пружины.
Обозначим жесткость одной пружины k, а жесткость системы пружин kпар.
? 11. Докажите, что kпар = 2k.
Подсказка. См. рисунок 15.7.
Итак, жесткость системы из двух одинаковых параллельно соединенных пружин в 2 раза больше жесткости каждой из них.
? 12. Докажите, что при параллельном соединении двух пружин жесткостью k1 и k2
Подсказка. При параллельном соединении пружин их удлинение одинаково, а сила упругости, действующая со стороны системы пружин, равна сумме их сил упругости.
? 13. Две пружины жесткостью 200 Н/м и 50 Н/м соединены параллельно. Чему равна жесткость системы двух пружин?
? 14. Докажите, что жесткость системы двух параллельно соединенных пружин больше жесткости любой из пружин, образующих систему.
Дополнительные вопросы и задания
15. Постройте график зависимости модуля силы упругости от удлинения для пружины жесткостью 200 Н/м.
16. Тележку массой 500 г тянут по столу с помощью пружины жесткостью 300 Н/м, прикладывая силу горизонтально. Трением между колесами тележки и столом можно пренебречь. Чему равно удлинение пружины, если тележка движется с ускорением 3 м/с 2 ?
17. К пружине жесткостью k подвешен груз массой m. Чему равно удлинение пружины, когда груз покоится?
18. Пружину жесткостью k разрезали пополам. Какова жесткость каждой из образовавшихся пружин?
19. Пружину жесткостью k разрезали на три равные части и соединили их параллельно. Какова жесткость образовавшейся системы пружин?
20. Докажите, что жесткость и последовательно соединенных одинаковых пружин в n раз меньше жесткости одной пружины.
21. Докажите, что жесткость n параллельно соединенных одинаковых пружин в n раз больше жесткости одной пружины.
22. Если две пружины соединить параллельно, то жесткость системы пружин равна 500 Н/м, а если эти же пружины соединить последовательно, то жесткость системы пружин равна 120 Н/м. Чему равна жесткость каждой пружины?
23. Находящийся на гладком столе брусок прикреплен к вертикальным упорам пружинами жесткостью 100 Н/м и 400 Н/м (рис. 15.8). В начальном состоянии пружины не деформированы. Чему будет равна действующая на брусок сила упругости, если его сдвинуть на 2 см вправо? на 3 см влево?
При параллельном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.5), смещение тела равно деформации каждой из пружин:
. (2.9)
Рис. 2.5 Параллельное соединение пружин
Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна сумме сил упругости двух установленных пружин, откуда с учетом (2.9) получаем
,
. (2.10)
Последовательное соединение пружин
При последовательном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.6), смещение тела равно сумме деформаций пружин:
. (2.11)
Рис. 3.6 Последовательное соединение пружин
Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна каждой из сил упругости установленных пружин, откуда
,
,
Окончательно с учетом (2.11) получаем
. (2.12)
Влияние сопротивления на свободные колебания
Пусть на точку массы m, совершающую прямолинейное движение, действуют две силы (рис. 2.7):
Восстанавливающая сила (сила упругости пружины): .
Сила сопротивления, пропорциональная скорости движения точки (сила сопротивления демпфера): .
Рис. 2.7 Движение массы с демпфированием
Дифференциальное уравнение движения точки запишется как
;
,
,
, (2.13)
получаем линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
. (2.14)
Характеристическое уравнение имеет вид
, (2.15)
его корни равны
, (2.16)
где – дискриминант.
Как известно из курса высшей математики, общее решение дифференциального уравнения (2.14) существенно зависит от знака дискриминанта , т.е. от соотношения между b и k.
1-й случай (малое сопротивление): b k , D 0.
Обозначим , причем k* k. Тогда корни (2.16) характеристического уравнения будут комплексно сопряженными:
,
Общее решение дифференциального уравнения (2.14) в данном случае имеет вид
, (2.17)
это затухающие колебания с частотой k * и периодом (рис.3.8).
Амплитуда колебаний убывает со временем. Отношение последующей амплитуды к предыдущей называется декрементом затухания:
* k) и к увеличению их периода (Т * > Т).
Корни (2.16) характеристического уравнения получаются кратные, , и решение дифференциального уравнения (2.14) приобретает вид
. (2.19)
Поскольку экспонента убывает быстрее, чем растёт линейная функция времени, в зависимости от начальных условий движения получим ту или иную картину затухающего апериодического (т.е. не колебательного) движения (рис.2.9).
3-й случай (большое сопротивление): b > k, D > 0.
В этом случае обозначим >0, и оба корня (2.16) характеристического уравнения будут действительными и отрицательными: