Класс точности на чертежах

Настоящий стандарт устанавливает общие принципы назначения и расчета точности геометрических параметров металлоконструкций и правила внесения требований точности в проектную документацию при разработке чертежей КМ.

В настоящем стандарте использованы ссылки на следующие нормативные документы:

СНиП 3.03.01-84 Несущие и ограждающие конструкции

ГОСТ 21778-81 СОТГПС. Основные положения

ГОСТ 21779-82 СОТГПС. Технологические допуски

ГОСТ 21780-83 СОТГПС. Расчет точности

ГОСТ 24642-81* Допуски формы и расположения поверхностей

ГОСТ 26607-85 СОТГПС. Функциональные допуски

ГОСТ 2.307-68* ЕСКД. Нанесение размеров и предельных отклонений

ГОСТ 2.308-79* ЕСКД. Указание на чертежах допусков формы и расположения поверхностей

ГОСТ 2.309-73* ЕСКД. Обозначение шероховатости поверхности

ГОСТ 21.113-88 СПДС. Обозначение характеристик точности

3.1 В системе обеспечения точности геометрических параметров в строительстве (СОТГПС) применяются следующие термины, определения и обозначения.

геометрический параметр: линейная или угловая величина;

номинальное значение: значение, указанное в проекте;

действительное значение: размер, полученный в результате измерения;

точность геометрического параметра: в каждом отдельном случае характеризуется значением ± δ действительного отклонения от номинального значения размера, указанного в проектной документации, либо классом точности по ГОСТ 21779-82;

допуск Δ: абсолютное значение разности предельных значений геометрического параметра. Значение Δ принимается по ГОСТ 21779-82;

поле допуска: совокупность значений геометрического параметра в пределах, ограниченных допуском;

предельное отклонение: ± δ – алгебраическая разность между предельным и номинальным значением параметра;

Функциональный допуск Δф: допуск геометрических параметров в сопряжениях и точность положения элементов в конструкциях, задаваемый из условия обеспечения функциональных требований. Номенклатура допусков по ГОСТ 26607-85. Значения некоторых функциональных допусков приведены в таблице 1 приложения А.

Функциональный допуск может быть задан из условия нормальной эксплуатации приборов и оборудования. Например, при перекосе опор транспортерных галерей могут выйти из строя транспортеры, и функциональным допуском будет разность отметок опор;

технологический допуск Δт: допуск геометрического параметра, регламентирующий точность технологических процессов и операций и разбивочных работ.

Номенклатура и значение технологических допусков по классам точности даны в ГОСТ 21779-82;

класс точности: совокупность значений технологических допусков.

Каждый класс точности содержит ряд допусков, соответствующих одинаковой степени точности для всех номинальных значений данного геометрического параметра;

уровень собираемости: количественный показатель доли бесподгоночных работ при сборке.

Коэффициент

Действительное отклонение является количественным выражением систематических и случайных погрешностей, накопленных при выполнении операций и измерений.

Характеристиками точности являются нижнее δн и верхнее δв предельное отклонение от номинального значения «х». Интервал, в пределах которого может изменяться значение «х» от х – δн до х + δв называется допуском – Δ = xmax – xmin или Δ = δв – δн.

Значение называется отклонением середины поля допуска. Для большинства допусков в строительстве δв = δн = Δ:2 и δо = 0. В рабочей документации указывается размер с предельными отклонениями.

Погрешности, возникающие при изготовлении и монтаже конструкций, по характеру их происхождения могут быть разбиты на две группы: систематические и случайные.

Систематические погрешности возникают под влиянием постоянно действующего фактора и не изменяются (либо изменяются по какому-то определенному закону) в процессе выполнения технологического процесса и имеют постоянный знак. Примерами таких отклонений могут служить отклонения, вызванные неисправностью оборудования. В этом случае их необходимо устранить. Сварочное укорочение также является систематическим отклонением. Его нужно учитывать в уравнении допусков с учетом его знака (-).

Случайные погрешности не имеют закономерностей ни по величине, ни по знаку. Для их расчета пользуются правилами теории вероятностей.

Оценка собираемости конструкций или сооружений заключается в сравнении суммарного технологического допуска с функциональным допуском. Функциональные допуски (предельного отклонения) назначают исходя из предъявляемых к строительным конструкциям функциональных требований: надежности, нормальной эксплуатации, эстетических и экономических требований. Функциональными допусками регламентируют точность размеров, формы и положения в пространстве элементов зданий и сооружений.

4.1 Целью назначения требований точности геометрических параметров металлоконструкций в чертежах КМ является повышение качества продукции и получении прибыли за счет уменьшения подгоночных работ и сокращения сроков монтажа.

4.2. В проекте КМ должна содержаться информация по точности изготовления, монтажа и разбивочных работ, необходимых для разработки чертежей КМД и проекта производства работ.

5.2 Стандартизированные конструкции (колонны, ригели и т.д.) имеют указания по точности изготовления в соответствующих ГОСТах.

– на геодезические и разбивочные работы не ниже 5 класса;

– на изготовление в заводских условиях не ниже 5 класса;

– на монтаж не ниже 6 класса.

5.4 Уникальные конструкции и конструкции, не указанные в п. 5.1 – 5.3 должны содержать указания по точности, основанные на расчете

5.5 Параметры, для которых производится расчет и которые необходимо контролировать при изготовлении и монтаже, должны быть указаны в комплекте КМ с предельными отклонениями, либо в виде указания класса точности по ГОСТ 21779-82 «Технологические допуски».

5.6 Для строительных металлоконструкций такими параметрами являются:

– расстояния между разбивочными осями;

– габаритные размеры отправочных марок;

– расстояния между группами монтажных отверстий;

– расстояния между отверстиями в группе.

5.7 Для конструкций промзданий, не указанных в п. 5.3, необходимость расчета точности определяется ГИПом и согласовывается с Заказчиком при определении стоимости проектных работ

Читайте также:  Станок для заточки ножниц парикмахерских цена

5.8 Геометрические параметры, для которых необходимо назначить требования точности:

– длина подкрановой ветви;

– расстояние от опоры подкрановой балки до опорного столика стропильной фермы;

– расстояние от оси подкрановой ветви до оси подкрановой балки;

– высота сечения подкрановой и надкрановой ветви колонны;

– расстояние между отверстиями для крепления опор ферм;

– отклонение оси колонны от вертикали;

– отклонение осей в плане.

– расстояние между отверстиями;

– смещение отверстий от оси.

– длина верхнего пояса;

– высота на опоре;

– расстояние между отверстиями.

– расстояние между группами отверстий;

– расстояние между отверстиями в группе.

5.9 Порядок назначения точности в чертежах КМ показан в виде блок схемы (см. рис. 1)

Анализ исходных данных. Определение необходимости расчета точности

Внести в чертежи и общие данные указания по точности изготовления и монтажа

Задать уровень собираемости Kс

Определить параметры, по которым нужен расчет

Задать значения функционального допуска ΔФ по таблице приложения А

Задаться значениями технологических допусков и определить ΣΔт

Провести вычисления. Установить соответствие ΣΔФ: ΣΔт ≤ Kс

Рис. 1 Порядок назначения точности в чертежах КМ. Блок – схема

6.1 Расчет точности производится по указаниям данного стандарта, разработанного на основе ГОСТ 21780-83 Расчет точности.

6.2 Расчет точности заключается в подборе показателей точности (Δ, δ) по каждому параметру с целью добиться выполнения условия

где K с – показатель уровня собираемости по п. 6.3;

Δф – функциональный допуск по таблице 1 приложения А;

ΣΔт – суммарный технологический допуск по п.п. 6.4 – 6.6.

6.3 Показатель уровня собираемости K с – коэффициент собираемости зависит от степени ответственности конструкций по группам:

первая группа – уникальные и прецизионные конструкции, для которых необходимо безусловное соблюдение функционального допуска

Кс = 1 полная собираемость

вторая группа – основные несущие конструкции каркасов зданий сооружений 1-ой и 2-ой степени ответственности (колонны, балки, фермы, ригели)

Кс = 0,95 нормальная собираемость

третья группа – прочие конструкции

Ко = 0,85 приемлемый уровень собираемости

четвертая группа – временные конструкции, допускающие достижение собираемости путем рихтовки, подтяжки и других видов подгоночных работ при условии, что напряжения в конструкции при натяге не превышает 10 % or расчетных и усилиях при рихтовке, не превышающих 2,0 кн (20 кг)

Кс = 0,5 допустимый уровень собираемости

6.5 Если в техническом задании не оговорены требования к точности операций, то их значения при расчете принимаются по таблицам 1 – 9 ГОСТ 21779-82 для геодезических и разбивочных работ по 5 классу, при изготовлении в заводских условиях по 4 – 5 классу, при установке в проектное положение по 5 – 6 классу.

а) допуск, который получается как сумма случайных величин, рассчитывается по формуле

б) в особых случаях, оговоренных п. 2.7 ГОСТ 21780-83, а именно при числе, составляющих меньше трех, для уникальных сооружений и для систематических допусков (например, сварочное укорочение имеет определенное значение и знак минус) суммарный допуск получается как алгебраическая сумма

Когда определены все составляющие, нужно установить соответствие

Если условие выполнено, заданные значения допусков технологических операций нужно внести в комплект КМ, если условие не выполнено, то можно либо ужесточить допуски и повторить расчет, либо предусмотреть в конструкции компенсаторы.

6.7 В качестве компенсатора могут быть применены конструктивные мероприятия: прокладки, овальные отверстия и т.д., а также организационные мероприятия: назначить способ изготовления, исключающий погрешности (кондукторы, шаблоны, обработку «пакетом»), назначить способ монтажа, исключающий накопление погрешностей (связевые блоки, кондукторы) и т.д. Эти требования должны быть внесены в Общие данные.

6.8 Расчет точности элементов и деталей, входящих в монтажные марки

6.9.1. Расчет точности укрупнительной сборки подкрановых балок производится при разработке чертежей КМД по следующей схеме:

Рис. 2 Схема балки

Из расчета монтажной собираемости определено, что балка должна иметь размер l = 11920 ± 8 мм (Δ1 = 16 мм). Необходимо определить точность обрезки заготовок Δ1.

Δ 1 – отклонение длины заготовки для сварного двутаврового стержня, l = 11920 мм;

Δ 2 – отклонение толщины опорных ребер;

Δ 3 – отклонение толщины сварочного зазора;

Δ 4, 5 – отклонение длины стержня вследствие его изгиба из плоскости и в плоскости;

Δ 6 – сварочные деформации от приварки опорных ребер и ребер жесткости.

Уравнение размерной цепи:

Величины Δ 4 , Δ 5 малы, ими пренебрегаем.

Исходные данные ΔΣ = 16 мм (из расчета):

(по ГОСТ на прокат);

(ГОСТ 5264-80 швы сварных соединений);

δ6 = 0,5×8 = 0 ÷ 4 мм (сварочное укорочение для n = 8).

Точность обрезки заготовки Δ 1 определяем из уравнения:

Поскольку допуски несимметричные, необходимо определить середину поля допуска по формулам:

ΔΣ = 16 мм, ;

Δ 2 = 1 мм,

Δ 3 = 1,5 мм,

Δ 6 = -4 мм,

отсюда

т.е. для того, чтобы готовая балка имела допуск ΔΣ = 16 мм, точность обрезки заготовки должна быть δ1 = +8 – 4.

7.1 Если требования точности принимаются без расчета, раздел «Общие данные» в комплекте чертежей КМ должны иметь в разделе «Требования к изготовлению и монтажу» следующий текст:

При изготовлении конструкций в заводских условиях предельные отклонения геометрических параметров должны соответствовать 4 – 5 классу по ГОСТ 21779-82 «Технологические допуски».

Читайте также:  Допуски и посадки обозначение их на чертеже

При установке конструкций в проектное положение предельные отклонения положения (вертикальность, горизонтальность и т.д.) должны соответствовать 5 – 6 классу по ГОСТ 21779-82 «Технологические допуски».

6.2 Для конструкции, требования к точности изготовления и монтажа которых определены в специальных документах, раздел «Требования к изготовлению и монтажу» должен содержать ссылку на этот документ (например для резервуаров такая ссылка делается на ПБ 03-605-03 и СНиП 3.03.01).

6.2 Если требования точности назначены в результате расчета и отличаются для разных элементов, то в чертежах размеры элемента должны указываться с соответствующими предельными отклонениями по ГОСТ 21.113-88, ГОСТ 2.307-68 и ГОСТ 2.308-79.

Длина детали не более чем L + δ мм и не менее чем L – δ мм

Рисунок 3 – Обозначение на чертежах предельных отклонений размеров и формы элемента

6.4 Для конструкций, имеющих поверхность, через которую передаются усилия (фланцы, торцы колонн и т.д.) и которая требует механической обработки, на чертеже ставится значок обозначения шероховатости поверхности по ГОСТ 2.309-73*Rz = 320 (см. рис. 4). Вид механической обработки указывается только в том случае, когда он является единственно возможным.

Рисунок 4 Обозначение шероховатости поверхности

8.1 Технико-экономический анализ проектного решения с заданным уровнем собираемости проводится в следующих случаях:

На стадии технического предложения, эскизного проекта

· для обоснования цены проектирования;

· для сравнения нескольких вариантов.

На стадии рабочих чертежей

· технико-экономический анализ для принятия решений в процессе проектирования.

8.2 Основным принципом при проведении технико-экономического анализа является получение продукции с заданными качествами с наименьшими затратами.

8.3 Система показателей выбирается в зависимости от решаемой задачи из ряда:

· снижение затрат времени на подгоночные работы;

Обобщающим показателем является прибыль.

8.4 При необходимости определения затрат на обеспечение точности можно пользоваться перечнем затрат, приведенном в приложении Б.

8.5 Затраты на расчет и назначение точности на стадии разработки КМ на несколько порядков ниже, чем затраты при подгоночных работах на монтаже.

Таблица А.1 – Функциональных допусков

Степень точности размеров той или иной детали задается указанным в чертеже классом точности. ГОСТ на допуски и посадки устанавливает 13 классов точности: 1, 2, 2а, 3, За, 4, 5, 6, 7, 8, 9, 10, 11. Самым точным является класс 1, а в последующих (в порядке возрастания) классах точность снижается. Допуск на изготовление деталей по 1-му классу самый узкий, а предельные размеры близки к номинальному. В других классах допуск постепенно увеличивается. Классы точности 7, 8, 9, 10 и 11 имеют сравнительно большие допуски и обычно устанавливаются на свободные размеры деталей, не предназначенных для сопряжения.

В каждом классе точности ГОСТ устанавливает перечень возможных посадок для систем отверстия и вала. В соответствующих таблицах допусков и посадок по классам точности даются отклонения на размеры вала и отверстия для любого номинального размера. ГОСТ устанавливает также порядок обозначения посадок и классов точности на чертежах. Посадка обозначается буквами, стоящими справа от номинального размера, а класс точности выражается цифровым индексом у соответствующей буквы. Если буквенные обозначения не имеют цифровых индексов, это значит, что размер должен быть выполнен по 2-му классу точности. Необходимо помнить, что в числителе всегда ставят цифру, относящуюся к отверстию, а в знаменателе — цифру, относящуюся к валу. Например, если на чертеже дано обозначение 50х33, это означает, что номинальный размер сопряжения 50 мм, посадка выполняется по системе отверстия по 3-му классу точности, а вал обрабатывается с допуском, соответствующим ходовой посадке по 3-му классу точности. При этом значения отклонений для вала и отверстия выбирают по таблице допусков 3-го класса точности для системы отверстия по номинальному размеру 50 мм. Для рассматриваемого примера отклонения соответствуют: для основного отверстия 50+0,05, а для вала 50—0,032—0,1. Пример обозначения 40ПВ показывает, что номинальный размер сопряжения 40 мм, посадка осуществляется по 2-му классу точности в системе вала, а отверстие выполняется с отклонением для плотной посадки (П) по 2-му классу точности. По соответствующей таблице допусков в системе вала для 2-го класса точности находим по номинальному размеру 40 мм следующие значения: для вала размер 40—0,017, для отверстия 40+0,018—0,008 . (В таблицах допусков предельные отклонения обозначают в микронах; 1 мкм = 1/1000 миллиметра).

Работоспособность деталей зависит не только от точности размеров, но и от степени обработки их поверхностей. При любом виде обработки на поверхности детали остаются следы инструмента, которым она обрабатывается, т. е. некоторая шероховатость.

ГОСТ 2789—73 устанавливает 14 классов шероховатости. Классы с 1-го по 6-й содержат только один разряд, а все остальные — три разряда. Параметрами шероховатости являются: Ra—среднее арифметическое отклонение профиля и Rz— высота неровностей профиля по десяти точкам. Оба параметра измеряются в микронах; для классов с 1-го по 5-й, 13-го и 14-го установлен параметр Rz, а для остальных Ra.

Значение параметра шероховатости указывают в обозначении шероховатости: для параметра Ra — без символа (например, 0,5); для параметра Rz — после символа (например, Rz32).

Читайте также:  Клей для оргстекла дихлорэтан

При указании диапазона шероховатости в обозначении шероховатости приводят пределы значения параметра, размещая 1,00 0,080 их в две строки: 1,00 0,63. Чем выше класс шероховатости, тем лучше обработка поверхности.

Вопросы для повторения
1. Что такое взаимозаменяемость деталей и каково ее значение при ремонте судовых механизмов?

2. Что такое допуск, отклонение, класс точности? Какие классы точности приняты в машиностроении?

3. Что называется посадкой? Каковы основные виды посадок?

4. Что такое система отверстий и система вала и в чем их различие?

5. Какое значение имеет чистота обработки (степень шероховатости) поверхностей деталей?

По общесоюзным стандартам на допуски и посадки принято 13 классов точности: 1; 2; 2а; 3; 3а; 4; 5; 6; 7; 8; 9; 10 и 11. Первый класс самый точный. Другие классы имеют меньшую точность (в порядке убывания). Так в 1-м классе интервал допуска между предельными размерами самый узкий и оба предельных размера близки к номинальному. В других классах точности допуск увеличен. Установление нескольких классов точности позволяет применять в производстве наиболее простые методы обработки деталей в соответствии с назначением.

В зависимости от назначения детали изготовляются с тем или иным классом точности.

По 1-му классу точности изготовляют особо точные детали, например детали приборов, измерительных инструментов, кольца шарикоподшипников. Этот класс точности вследствие чрезвычайно небольшого предела отклонений от номинального размера имеет ограниченное применение, так как для получения такой точности требуются специальные особо точные приборы и приемы обработки.

2-й класс точности является основным и применяется в точном машиностроении. По этому классу точности обрабатывают наиболее ответственные детали металлорежущих станков, автомобилей, тракторов, комбайнов, текстильных, обувных и многих других машин и механизмов.

3-й класс точности широко применяется в тяжелом машиностроении, тракторостроении и комбайностроении. По этому классу точности обрабатываются, например, рабочие поверхности гильз цилиндров.

Класс точности 2а является промежуточным между 2 и 3-м классами, а класс точности За – промежуточным между 3 и 4-м классами. Промежуточные классы точности находят применение в некоторых отраслях промышленности, где не требуется высокая точность.

4-й класс точности довольно широко распространен и применяется при изготовлении деталей с относительно большими допусками, например не ответственных деталей сельскохозяйственных машин, паровозов и др.

5-й класс точности применяется при грубой обработке деталей. По этому классу обрабатываются многие детали сельскохозяйственных машин и некоторые детали тракторов и комбайнов и различных грубых механизмов.

7, 8, 9, 10 и 11-й классы точности имеют самые большие допуски на изготовление, и в силу этого отклонения фактических размеров детали от номинального размера могут быть весьма значительными. С такими классами точности изготовляются детали, не имеющие сопряжений, т. е. заготовки, поковки и литье.

Системой допусков определяется строгий порядок условий изготовления и приема деталей в отношении допустимых отклонений их действительных размеров и форм от заданных.

Введение системы допусков потребовало от промышленности изготовления взаимозаменяемых деталей.

В связи с тем что существует международная торговля машинами, приборами и прочими предметами машиностроительного производства, создана единая международная система допусков.

Система допусков подразделяется на две основные системы – систему отверстия и систему вала.

В системе отверстия основным элементом является деталь с отверстием (условно называют просто отверстие). Эта система характеризуется тем, что в ней для всех посадок одного и того же класса точности при одинаковых номинальных размерах предельные размеры отверстия остаются постоянными. Осуществление различных посадок (зазоры и натяги) выполняется за счет соответствующего увеличения или уменьшения предельных размеров вала (рис. 65, а). Система отверстия обозначается условно буквой А.

Рис. 65. Системы допусков:

а – система отверстия: 1 – неподвижные посадки, 2 – вал основной, 3 – подвижные посадки; б – система вала: 1 – неподвижные посадки, 2 – отверстие основное, 3 – подвижные посадки

В системе вала основным элементом является вал. Эта система характеризуется тем, что в ней для всех посадок одного и того же класса точности при одинаковых номинальных размерах предельные размеры вала остаются постоянными. Осуществление различных посадок (зазоры и натяги) достигается за счет соответствующего увеличения или уменьшения предельных размеров отверстия (рис. 65, б). Таким образом, при системе вала допуск всегда будет направлен в сторону уменьшения вала. Система вала обозначается буквой В.

ГОСТ приняты и система вала, и система отверстия. Предприятия выбирают ту или иную систему, исходя из экономической целесообразности.

Система отверстия имеет некоторые преимущества перед системой вала и наиболее распространена на заводах, производящих станки для обработки металлов, дерева, небольшие точные станки и приборы, различные двигатели и т. п. При работе по системе отверстия требуется меньше режущего и измерительного инструмента, так как все отверстия обрабатываются мерным инструментом, который не требует настройки станка на размер обрабатываемого отверстия.

Кроме того, пригонка вала к отверстию значительно проще и дешевле, чем пригонка отверстия к валу. Однако в некоторых случаях более целесообразно применять систему вала.