Катодная защита металлов от коррозии

Коррозия – это химическая и электрохимическая реакция металла с окружающей средой, вызывающая его повреждение. Она протекает с разной скоростью, которую можно уменьшить. С практической точки зрения интерес представляет антикоррозионная катодная защита металлических сооружений, контактирующих с землей, с водой и с транспортируемыми средами. Особенно повреждаются наружные поверхности труб от влияния грунта и блуждающих токов.

Внутри коррозия зависит от свойств среды. Если это газ, он должен быть тщательно очищен от влаги и агрессивных веществ: сероводорода, кислорода и др.

Принцип работы

Объектами процесса электрохимической коррозии являются среда, металл и границы раздела между ними. Среда, которой обычно является влажный грунт или вода, обладает хорошей электропроводностью. На границе раздела между ней и металлической конструкцией происходит электрохимическая реакция. Если ток положительный (анодный электрод), ионы железа переходят в окружающий раствор, что приводит к потере массы металла. Реакция вызывает коррозию. При отрицательном токе (катодный электрод) этих потерь нет, поскольку в раствор переходят электроны. Способ используется в гальванотехнике для нанесения на сталь покрытий из цветных металлов.

Катодная защита от коррозии осуществляется, когда к объекту из железа подводят отрицательный потенциал.

Для этого в грунте размещают анодный электрод и подключают к нему положительный потенциал от источника питания. Минус подается на защищаемый объект. Катодно-анодная защита приводит к активному разрушению от коррозии только анодного электрода. Поэтому его следует периодически менять.

Негативное действие электрохимической коррозии

Коррозия конструкций может происходить от действия блуждающих токов, попадающих из других систем. Они полезны для целевых объектов, но наносят существенный вред близкорасположенным сооружениям. Блуждающие токи могут распространяться от рельсов электрифицированного транспорта. Они проходят по направлению к подстанции и попадают на трубопроводы. При выходе из них образуются анодные участки, вызывающие интенсивную коррозию. Для защиты применяют электродренаж – специальный отвод токов от трубопровода к их источнику. Здесь также возможна катодная защита трубопроводов от коррозии. Для этого необходимо знать величину блуждающих токов, которую измеряют специальными приборами.

По результатам электрических измерений выбирается способ защиты газопровода. Универсальным средством является пассивный способ изоляции труб от контакта с грунтом с помощью изолирующих покрытий. Катодная защита газопровода относится к активному способу.

Защита трубопроводов

Конструкции в земле защищают от коррозии, если подключить к ним минус источника постоянного тока, а плюс – к анодным электродам, закопанным рядом в грунт. Ток пойдет к конструкции, защищая ее от коррозии. Таким образом производится катодная защита трубопроводов, резервуаров или трубопроводов, находящихся в грунте.

Анодный электрод будет разрушаться, и его следует периодически менять. Для бака, заполненного водой, электроды размещают внутри. При этом жидкость будет электролитом, через которую ток пойдет от анодов к поверхности емкости. Электроды хорошо контролируются, и их легко заменить. В грунте это делать сложней.

Источник питания

Возле нефте- и газопроводов, в сетях отопления и водоснабжения, для которых необходима катодная защита, устанавливают станции, от которых подается напряжение на объекты. Если они размещаются на открытом воздухе, степень их защиты должна быть не ниже IP34. Для сухих помещений подходит любая.

Станции катодной защиты газопроводов и других крупных сооружений имеют мощность от 1 до 10 кВт.

Их энергетические параметры прежде всего зависят от следующих факторов:

  • сопротивление между почвой и анодом;
  • электропроводность грунта;
  • длина защитной зоны;
  • изолирующее действие покрытия.

Традиционно преобразователь катодной защиты представляет собой трансформаторную установку. Сейчас на смену ей приходит инверторная, обладающая меньшими габаритами, лучшей стабильностью тока и большей экономичностью. На важных участках устанавливают контроллеры, обладающие функциями регулирования тока и напряжения, выравнивания защитных потенциалов и др.

Оборудование представлено на рынке в различных вариантах. Для конкретных нужд применяется индивидуальное проектирование, обеспечивающее лучшие условия эксплуатации.

Параметры источника тока

Для защиты от коррозии для железа защитный потенциал составляет 0,44 В. На практике он должен быть больше из-за влияния включений и состояния поверхности металла. Максимальная величина составляет 1 В. При наличии покрытий на металле ток между электродами составляет 0,05 мА/м 2 . Если изоляция нарушится, он возрастает до 10 мА/м 2 .

Катодная защита эффективна в комплексе с другими способами, поскольку меньше расходуется электроэнергии. Если на поверхности конструкции есть лакокрасочное покрытие, электрохимическим способом защищаются только места, где оно нарушено.

Особенности катодной защиты

  1. Источниками питания служат станции или мобильные генераторы.
  2. Расположение анодных заземлителей зависит от специфики трубопроводов. Способ расстановки может быть распределенным или сосредоточенным, а также располагаться на разной глубине.
  3. Материал анода выбирается с низкой растворимостью, чтобы его хватило на 15 лет.
  4. Потенциал защитного поля для каждого трубопровода рассчитывается. Он не регламентируется, если на конструкциях отсутствуют защитные покрытия.

Стандартные требования "Газпрома" к катодной защите

  • Действие в течение всего срока эксплуатации средств защиты.
  • Защита от атмосферных перенапряжений.
  • Размещение станции в блок-боксах или в отдельно стоящей в антивандальном исполнении.
  • Анодное заземление выбирается на участках с минимальным электрическим сопротивлением грунта.
  • Характеристики преобразователя выбираются с учетом старения защитного покрытия трубопровода.

Протекторная защита

Способ представляет собой вид катодной защиты с подключением электродов из более электроотрицательного металла через электропроводную среду. Отличие заключается в отсутствии источника энергии. Протектор берет коррозию на себя, растворяясь в электропроводной окружающей среде.

Через несколько лет анод следует заменить, поскольку он вырабатывается.

Эффект от анода увеличивается со снижением у него переходного сопротивления со средой. Со временем он может покрываться коррозионным слоем. Это приводит к нарушению электрического контакта. Если поместить анод в смесь солей, обеспечивающую растворение продуктов коррозии, эффективность повышается.

Влияние протектора ограничено. Радиус действия определяется электрическим сопротивлением среды и разностью потенциалов между анодом и катодом.

Протекторная защита применяется при отсутствии источников энергии или когда их использование экономически нецелесообразно. Она также невыгодна при применении в кислых средах из-за высокой скорости растворения анодов. Протекторы устанавливают в воде, в грунте или в нейтральной среде. Аноды из чистых металлов обычно не делают. Растворение цинка происходит неравномерно, магний корродирует слишком быстро, а на алюминии образуется прочная пленка окислов.

Читайте также:  Цена на штукатурные работы

Материалы протекторов

Чтобы протекторы обладали необходимыми эксплуатационными свойствами, их изготавливают из сплавов со следующими легирующими добавками.

  • Zn + 0,025-0,15 % Cd+ 0,1-0,5 % Al – защита оборудования, находящегося в морской воде.
  • Al + 8 % Zn +5 % Mg + Cd, In, Gl, Hg, Tl, Mn, Si (доли процента) – эксплуатация сооружений в проточной морской воде.
  • Mg + 5-7 % Al +2-5 % Zn – защита небольших конструкций в грунте или в воде с низкой концентрацией солей.

Неправильное применение некоторых видов протекторов приводит к негативным последствиям. Аноды из магния могут быть причиной растрескивания оборудования из-за развития водородного охрупчивания.

Совместная протекторная катодная защита с антикоррозионными покрытиями повышает ее эффективность.

Распределение защитного тока улучшается, а анодов требуется значительно меньше. Один магниевый анод защищает покрытый битумом трубопровод на длину 8 км, а без покрытия – всего на 30 м.

Защита кузовов автомобилей от коррозии

При нарушении покрытия толщина кузова автомобиля может уменьшиться за 5 лет до 1 мм, т. е. проржаветь насквозь. Восстановление защитного слоя важно, но кроме него есть способ полного прекращения процесса коррозии с помощью катодно-протекторной защиты. Если превратить кузов в катод, коррозия металла прекращается. Анодами могут быть любые токопроводящие поверхности, расположенные рядом: металлические пластины, контур заземления, корпус гаража, влажное дорожное покрытие. При этом эффективность защиты возрастает с ростом площади анодов. Если анодом является дорожное покрытие, для контакта с ним применяется "хвост" из металлизованной резины. Его помещают напротив колес, чтобы лучше попадали брызги. "Хвост" изолируется от корпуса.

К аноду подключается плюс аккумуляторной батареи через резистор 1 кОм и последовательно соединенный с ним светодиод. При замыкании цепи через анод, когда минус соединен с кузовом, в нормальном режиме светодиод еле заметно светится. Если он ярко горит, значит, в цепи произошло короткое замыкание. Причину надо найти и устранить.

Для защиты последовательно в цепи нужно установить предохранитель.

При нахождении автомобиля в гараже его подключают к заземляющему аноду. Во время движения подключение происходит через "хвост".

Заключение

Катодная защита является способом повышения эксплуатационной надежности подземных трубопроводов и других сооружений. При этом следует учитывать ее негативное воздействие на соседние трубопроводы от влияния блуждающих токов.

Все элементы различаются по энергии, которую необходимо приложить, чтобы оторвать электрон от атома элемента. Те элементы, которые легко отдают электроны, относятся к группе металлов. Те же элементы, которые отдают электроны с большим трудом, но легко поглощают их, дополняя электронную оболочку до заполненной, относятся к неметаллам (металлоидам). Металлы обладают различной энергией отрыва электронов – есть металлы, которые легко отдают электроны (окисляются) – это щелочные и щелочноземельные металлы, другие – с трудом окисляются даже сильнейшими окислителями. Сравнительную стойкость металлов к коррозии описывает ряд электроотрицательности (напряжений) металлов ( таблица 2.6) , который изучается еще в школе. Если рассмотреть этот ряд, то мы увидим, что железо стоит левее водорода, то есть в нормальных условиях оно должно выделять водород из воды (окисляться даже водой). Правда, на практике этого в большинстве случаев не происходит из-за наличия перенапряжения данной реакции, но во влажной атмосфере (особенно при наличии влаги на поверхности изделия) процесс коррозии протекает энергично.

Таблица 2.6. Ряд напряжений (электроотрицательности) элементов и значения их нормальных электродных потенциалов (НЭП).

Li

K

Ca

Na

Mg

Be

Al

Fe

Zn

Ni

H

Cu

Ag

Pt

Если посмотреть упомянутый выше ряд напряжений металлов, то мы увидим, что цинк является более активным элементом, чем железо. Поэтому, если соединить между собой эти два металла, то электроны от цинка перейдут к железу, последнее станет более электроположительным и не станет окисляться, а окисляться будет именно цинк. В этой системе железо будет катодом, а цинк – анодом. Если поместить пару “железо-цинк” в электролит, а затем замкнуть между собой металлическим проводником, то по нему пойдет ток. При этом металлический цинк будет растворяться. Ток будет идти до тех пор, пока будет в наличии металлический цинк. Таким образом, металлический цинк, защищая железо, приносится в жертву. Такой анод называется жертвенным анодом. Можно сделать и несколько по-другому. Например, нам необходимо защитить стальное оборудование, находящееся в земле (сваи, буровые трубы). В этом случае поступают следующим образом – рядом с защищаемым оборудованием помещают слегка зарытое в землю бросовое стальное оборудование, и между защищаемым оборудованием и жертвенным анодом прикладывают небольшое (порядка 1 вольта) напряжение, в результате чего защищаемое оборудование “становится более благородным” и перестает ржаветь. В качестве анодных материалов используются: магниевые аноды (общеприняты для подземных сооружений), высококремнистые сплавы, графитовые аноды (для подземных труб), полимерные аноды (для решеток в бетонах, загрязненных солями), а также малоизнашиваемые аноды (например, сплавы свинца с 2% серебра). Первый способ был предложен для защиты морских судов – к килю корабля плотно крепится лист специального цинкового сплава, который защищает корабль от преждевременного ржавления. Причем именно сплава, а не чистого цинка – последний не в состоянии поддерживать постоянные величины рабочего потенциала и, следовательно, плотности тока. Особым требованием к такому протекторному аноду является величина анодной плотности тока, причем в большинстве случаев рабочие режимы составляют 1-4 А/кв.м, при которых сплавы имеют высокие и стабильные значения потенциала и рабочего тока. Схемы защиты оборудования по указанным схемам даны на рис.№ 2.2.

Второй способ (а именно, с использованием в качестве анода бросовых стальных изделий с приложением определенной разницы потенциалов) применяется в нефтедобыче и при защите сооружений, находящихся в земле.

Впервые принцип катодной защиты был предложен Хэмфри Дэви в 1820-х годах.

Рис. 2.2. Способы катодной защиты сооружений: А – с помощью жертвенного анода; Б – с помощью наложенного потенциала.

Сравнение между жертвенным анодом и подавляемой током катодной защиты дано в таблице 2.7

Таблица 2.7. Сравнение двух способов катодной защиты по эффективности.

Методы защиты, основанные на изменении электрохимических свойств металла. Защита металла катодной поляризацией: история открытия, применение, обоснование эффективности. Способы катодной защиты металла от коррозии. Схема антикоррозийного устройства.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 19.12.2015
Размер файла 125,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Катодная защита

защита металл катодный поляризация коррозия

то при более отрицательном значении это равенство нарушается:

Читайте также:  Как отпаять смд светодиод

Рис. 1. Поляризационная диаграмма коррозионного процесса.

Уменьшение скорости анодной реакции при катодной поляризации эквивалентно уменьшению скорости коррозии. Коэффициент торможения при выбранном потенциале / будет равен двум

а степень защиты достигает 50%

Внешний ток , необходимый для смещения потенциала до значения , представляет собой разницу между катодным и анодным токами

(его величина на рис. выражена прямой ав). По мере увеличения внешнего тока потенциал смещается в более отрицательную сторону, и скорость коррозии должна непрерывно падать. Когда потенциал корродирующего металла достигает равновесного потенциала анодного процесса , скорость коррозии делается равной нулю (), коэффициент торможения – бесконечности, а степень защиты 100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током . Его величине на рис. соответствует отрезок cd. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, например, при переходе от водородной деполяризации к кислородной сила защитного тока уменьшается и становится равной предельному диффузному току (отрезок cd / на рис.).

Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии сравнительно невелик. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют “жертвенным анодом”.

Катодная защита обычно связана с защитой черных металлов, так как из них изготавливается подавляющая часть объектов работающих под землей и при погружении в воду, например трубопроводы, свайные основания, пирсы, эстакады, суда и др. В качестве материала для расходуемых анодов-протекторов во всем мире широко применяется магний. Обычно он используется в виде сплавов с содержанием 6% алюминия, 3% цинка и 0,2% марганца; эти добавки предотвращают образование пленок, которые снижают скорость растворения металла. Выход защитного тока всегда меньше 100%, так как магний корродирует и на нем выделяется водород. Применяется также алюминий, легированный 5% цинка, но разность потенциалов с железом для сплава значительно меньше, чем для магниевого сплава. Она близка к разности потенциалов для металлического цинка, который также применяется для защиты при условии, что путем соответствующего легирования на анодах предотвращается пленкообразование, связанное с обычным для цинка загрязнением примесями железа Выбор материала для анодов – сложная задача. В почвах или других средах низкой проводимости необходима большая разность потенциалов, поскольку падение iR между электродами весьма велико, в то время как в средах высокой проводимости возможна более экономичная для использования малая разность потенциалов. Важными переменными являются расположение электродов, рассеивающая способность среды, т. е. ее способность обеспечить одинаковую плотность тока на всех участках защищаемой поверхности, а также поляризационные характеристики электродов. Если электроды погружены в почву, которая по каким – либо причинам неприемлема, например агрессивна по отношению к анодам, то обычно практикуется окружать последние ложем из нейтрального пористого проводящего материала, называемого засыпкой.

Применение для катодной защиты метода приложения тока облегчает регулирование системы и часто дешевле, чем использование анодов – протекторов, которые, конечно, нуждаются в регулярных заменах.

На практике катодная защита редко применяется без дополнительных мероприятий. Требуемый для полной защиты ток обычно бывает чрезмерно велик, и помимо дорогостоящих электрических установок для его обеспечения следует иметь в виду, что такой ток часто будет вызывать вредный побочный эффект, например чрезмерное защелачивание. Поэтому катодная защита применяется в сочетании с некоторыми видами покрытий. Требуемый при этом ток мал и служит только для защиты обнаженных участков поверхности металла.

Что такое катодная защита металла?

Коррозия является электрохимическим процессом, образующим электрические потенциалы на участках поверхности металла с появлением при этом электрического тока (называемого в данном случае коррозионным током). Поэтому основным принципом активной катодной защиты черных металлов является защита посредством «жертвенных» электронов. Принцип заключается в том, что один металл (в данном случае – цинк) расходуется (жертвуется) для защиты другого металла (железо). Основной довод в пользу применения в качестве защитного покрытия для стали именно цинка — то, что цинк подвергается ржавлению гораздо медленнее, нежели железо.

Существует несколько способов катодной защиты металла от коррозии:

– присоединить к «плюсу» аккумуляторной батареи защищаемый металл (подземный трубопровод), сделав его катодом;

– прикрепить к днищу корабля (или нефтепроводу) цинковую пластину, которая будет ржаветь, защищая сталь (такая пластина называется протектором, а катодная защита — протекторной);

– покрыть цинком (анодом) защищаемую металлическую поверхность.

Последний метод защиты оказался самым эффективным и получил название — цинкование (оцинковка). Эффект в данном случае достигается за счёт очень хорошего электрического контакта между цинком и сталью.

Катодная защита была впервые описана сэром Гемфри Дэви в серии докладов представленных Лондонскому королевскому обществу [3] по развитию знаний о природе в 1824. После продолжительных тестов впервые катодную защиту применили в 1824 на судне HMS Samarang [4] . Анодные протекторы из железа были установлены на медную обшивку корпуса судна ниже ватерлинии, значительно снизив скорость корродирования меди. Медь, корродируя, высвобождает ионы меди, которые обладают антиобрастающим эффектом. В связи с чрезмерным обрастанием корпуса и снижением эффективности корабля, Королевский военно-морской флот Великобритании принял решение отказаться от протекторной защиты, чтобы получить преимущества отантифоулингового эффекта вследствие корродирования меди.

§ Для защиты судов от морской коррозии

§ Для стационарных нефтегазопромысловых сооружений, трубопроводов и хранилищ

§ Для подземных сооружений, трубопроводов, кабелей, и скважин

§ Для защиты стальной арматуры в железобетоне для свай, фундаментов, дорожных сооружений (в том числе горизонтальных покрытий) и зданий

§ Для защиты емкостных водонагревателей

Катодная защита от коррозии

Многим автолюбителям известно, что достаточно появиться небольшой царапине – и ржавчина начинает прямо-таки поглощать автомобиль. И бороться с ней весьма трудно. Какие только хитрости ни придумывают автомобилисты – различные покрытия, мастики, антикоры. Да вот беда: чтобы обработать с должным качеством все наиболее поражаемые места, приходится порой разбирать весь автомобиль. Такая операция занимает немало времени, да и требует постоянного контроля. Кроме того, в процессе эксплуатации происходит постепенное разрушение покрытий. Из-за вибраций при движении появляются микротрещины, под ударами камней или песка краска откалывается. Поэтому вполне понятно желание автомобилистов приобрести чудо-прибор: один раз потратился и навсегда защитил кузов от ржавчины.

Читайте также:  Сварка труб полуавтоматом в среде углекислого газа

Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например на кораблях устанавливают специальные протекторы, которые, растворяясь в морской вода, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) – металлическую болванку, к которой подключают "плюс" источника постоянного тока, а к самой трубе – "минус". Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов – реакция окисления, и саморастворение катода прекращается [1, 2].

При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным. Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1. 0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10. 30 мА/м2.

Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.).

Устройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства.

Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4. 5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4. 9 см2.

На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на "плюсовую" клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения R1, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).

Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25. 30мА.

При установке и монтаже устройства следует помнить, что:

– один защитный электрод защищает площадь с радиусом около 0,25. 0,35 м;

– защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;

– использовать можно только эпоксидный клей или шпатлевку на его основе;

– наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.

Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

Размещено на Allbest.ru

Подобные документы

Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.

контрольная работа [235,4 K], добавлен 11.02.2016

Способы получения алюминия. История открытия металла. Разложение электрическим током окиси алюминия, предварительно расплавленной в криолите. Механическая обработка, применение металла в производстве. Изучение его электропроводности, стойкости к коррозии.

презентация [420,5 K], добавлен 14.02.2016

Эксплуатационные работы по защите газопроводов от коррозии. Требования к органическим изолирующим покрытиям. Типы и виды наиболее широко применяемых покрытий. Расчет катодной защиты, подбор катодной станции. Биокоррозия и средства защиты от неё.

курсовая работа [199,3 K], добавлен 24.03.2009

Факторы, оказывающие негативное воздействие на состояние погружных металлических конструкций. Электрохимический метод предотвращения коррозии глубинно-насосного оборудования. Защита от коррозии с помощью ингибирования. Применение станций катодной защиты.

курсовая работа [969,5 K], добавлен 11.09.2014

Метод защиты подземных сооружений от электрохимической коррозии. Трансформаторные подстанции выше 1 кВ. Станции катодной защиты инверторного типа. Контрольно-измерительные пункты. Анодное заземление. Техническое обслуживание и ремонт воздушных линий.

курсовая работа [3,0 M], добавлен 22.01.2014

Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.

презентация [734,6 K], добавлен 09.04.2015

Конструкция сталеразливочных ковшей. Характеристика устройства для регулирования расхода металла и установок для продувки стали инертным газом. Вакуумирование металла в выносных вакуумных камерах. Продувка жидкого металла порошкообразными материалами.

реферат [987,2 K], добавлен 05.02.2016

Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.

реферат [50,7 K], добавлен 19.12.2012

Особенности сгибания заготовок из тонколистового металла в тисках и при помощи оправок, поочередность всех операций, характеристика инструментов. Анализ типичных дефектов при гибке металла. Этапы гибки прямоугольной скобы и металла круглого сечения.

презентация [399,9 K], добавлен 16.04.2012

Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

контрольная работа [79,3 K], добавлен 12.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.