Карбид натрия с водой

При щелочной реакции углерода с металлами могут получится различные карбиды. За счет соединения определенных химических элементов получаются соединения, которые характеризуются высокой прочностью. Довольно большое распространение получил вариант исполнения, который получил название карбид кальция. Его стали применять в самых различных областях промышленности.

При” рассмотрении того, как из углерода получить карбид кальция отметим, что по установленным стандартам в состав должно входить не менее 80% основного вещества. На долю примесей должно приходится не более 25%, в число которых также входит углерод. Производство оксида кальция также приводит к выделению тепловой энергии, что стоит учитывать.

Транспортировка и хранение

Порошок карбида кальция при воздействии влаги практически моментально разлагается. При этом образуется ацетилен, который при большой концентрации горюч и взрывоопасный. Именно поэтому нужно уделять довольно много внимания хранению карбида кальция, для чего часто применяют бидоны и специальные барабаны. К другим особенностям хранения отнесем следующие моменты:

  1. Выделяющийся ацетилен легче воздуха, поэтому скапливается вверху. Стоит учитывать, что он обладает наркотическими действиями, может самовоспламеняться.
  2. При производстве большого объема вещества особое внимание уделяется технике безопасности. Для фасовки применяются специальные упаковки.
  3. Для открытия упаковки следует использовать инструменты, которые не становятся причиной образования искр.
  4. Если вещество попадает на кожу или слизистую оболочку, то его нужно сразу удалить. При этом пострадавшая поверхность обрабатывается специальным кремом или другим защитно-заживляющим веществом.
  5. По установленным правилам, транспортировка может проводится исключительно при применении крытого транспортного средства. При этом проводить доставку по воздуху запрещается.

Установленные правила также запрещают хранить карбид кальция вместе с другими химическими веществами и источниками тепла. Это связано с тем, что образующиеся газы могут вступать в химическую реакцию с другими химическими веществами и возгораться.

Применение карбида кальция

Как ранее было отмечено, карбид кальция встречается в самых различных областях промышленности, зачастую поставляют для проведения промышленного синтеза. Свойства карбида кальция и реакция, протекающая при его соединении с различными веществами, определяют использование вещества в нижеприведенных случаях:

  1. Многие синтетически компоненты, входящих в состав современных материалов, производят на основе рассматриваемого компонента.
  2. Применяется для получения цианамида кальция. Подобный компонент используется для получения различных химических удобрений. Именно поэтому сырье применяется для регулирования скорости роста растений.
  3. Цианамид кальция также получают при соединении вещества с азотом.
  4. В некоторых случаях проводится восстановление металлов щелочной группы.
  5. Можно использовать рассматриваемое соединение в процессе газовой сварки.

При рассмотрении карбида кальция и области применения стоит учитывать, что подобное вещество чаще всего применяют для получения ацетилена. Подобный синтез карбида кальция разработал немецкий ученый. Среди особенностей подобного способа применения отметим следующие моменты:

  1. Ацетилен из карбида получают при оказании воздействия водой на используемое сырье.
  2. В результате прохождения химической реакции образуется требующийся газ, гашеная известь выпадает в осадок.
  3. Стоит учитывать, что при смешивании компонентов выделяется большое количество тепла. Поэтому работа должна проводится с учетом техники безопасности.
  4. В зависимости от вида применяемой технологии переработки сырья с 1 килограмма выходит около 290 литров газа.
  5. Скорость протекания процедуры зависит от чистоты применяемого сырья, температуры и количества воды.

Как показывает практика, при использовании чистого карбида на протекание химической реакции отводится около 20 литров волы на 1 килограмм сырья. Подобное количество воды требуется для того чтобы снизить температуру реакции, за счет чего обеспечиваются оптимальные условия для работы.

Техника безопасности

При проведении различных химических реакций для производства материалов должна соблюдаться техника безопасности. Как ранее было отмечено, выделяемые вещества могут быть взрывоопасными. Техника безопасности при взаимодействии с различными химическими веществами заключается в следующем:

  1. Для хранения и обработки требуется герметичное место. В обычном гараже проводить работы не рекомендуется.
  2. Нельзя допускать огонь к самому сырью, а также образующимся газам.
  3. Даже мелкие частицы могут привести к поражению кожных покровов. Именно поэтому работа должна проводится в респираторе и защитной одежде.
  4. Генераторы ацетилена размещают исключительно в хорошо изолированных помещениях.
  5. Если сырье применялось при проведении сварочных работ, то следует образующийся шлак утилизировать в специальных местах.
  6. При перемещении металлических и иных емкостей они должны быть надежно закреплены, столкновение и падение не допускается. Это может привести к появлению искр, которые станут причиной взрыва вещества.
Читайте также:  Метчик черновой и чистовой как отличить

Вышеприведенная информация определяет то, что работы с рассматриваемым сырьем не рекомендуется проводить в гараже или домашней мастерской. Несоблюдении технологии, отсутствии требующего оснащения и многие другие причины могут привести к возникновению искры и воспламенению веществ.

Карбид кальция реакция с водой

Рассматриваемое сырье чаще всего применяется для соединения с водой, в результате чего получается ацетилен. Взаимодействие карбида кальция с водой становится причиной появления газа с неприятным запахом и достаточно большим количеством различных примесей. В чистом виде получить подобное вещество можно только при его многоэтапной очистке.

Реакция карбида кальция с водой может быть проведена опытным путем. К особенностям подобной процедуры отнесем следующие моменты:

  1. В качестве емкости применяется 1,5-литровая бутылка.
  2. После ее заполнения водой добавляется несколько кусочков кристаллического материала.
  3. Протекание реакции приводит к появлению избыточного давления.
  4. После того как карбид кальция больше не вступает в реакцию, на бутылку помещается горящая бумага. В результате взаимодействия между карбидом кальция и водой образуется газ, который взрывается. При рассматриваемом опыте образуется огненное облако.

Подобный опыт довольно опасен и должен быть проведен с соблюдением техники безопасности.

В заключение отметим, что рассматриваемый компонент в последнее время часто применяется для проведения самых различных опытов. Соединение обладает большим количеством свойств, которые должны учитываться. Выделение тепла и газов становится причиной, по которой проводить опыты рекомендуется только в промышленности.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Забава детства. Так многие вспоминают о карбиде, особенно бывшие мальчишки, а ныне, конечно, взрослые мужчины.

Они брали камешки на строительных рынках. Покупать не покупали, а так, таскали с развалов и из кузовов грузовиков.

Добычу клали в бутылки , заливали водой, закрывали, встряхивали. Оставалось кинуть тару и полюбоваться взрывом.

Любовались и белесыми пузырями, которые карбид давал, попадая в лужи. Однако, кому обязаны таким весельем, сорванцы прошлых лет, зачастую не знали.

Что такое карбид? Попробуем ответить на вопрос, кажущийся неважным в детстве.

Что такое карбид

Карбит – не конкретное вещество, а группа соединений элементов с углеродом. Последний должен быть более электроотрицательным, чем «сосед».

Это обязательное условие, исключающее из ряда карбидов галогениды и оксиды углерода.

Под электроотрицательностью понимается способность атома сдвигать к себе электроны других веществ.

Электротрицательность углерода равна 2,6. Это данные шкалы Полинга. Она выстроена с учетом, что ионность в ковалентной связи делает эту связь прочнее.

Получается, электротрицательность вторых элементов в карбидах должна быть меньше 2,6.

Большинство подходящих элементов – металлы. Но, около 15% карбидов их не содержат.

Внешне карбиды – кристаллические, как правило, бесцветные, прозрачные вещества. Блеск у них алмазный .

Им соединения обязаны углероду, который является основой не только карбидов, но и алмазов .

По сути, герои статьи являются бриллиантами , в которых часть атомов замещена другими элементами.

Есть и цветные дуэты с углеродом, к примеру, карбид железа. Это всем знакомый цемент. Окрас у соединения серый.

Получается, свойства карбидов могут разниться. Несовпадения рассмотрим в главе «Виды». Пока же, изучим общие характеристики класса соединений.

Свойства карбида

К общим свойствам карбидов относится твердость . Она может быть больше, или меньше, но всегда выше среднего.

У некоторых представителей группы показатель близок к корунду и алмазу . Это самые твердые минералы на земле.

Особенно отличились карбиды переходных металлов. Это элементы побочных подгрупп периодической системы. У всех переходных металлов есть электроны на d- и f-орбиталях.

Обобщает карбиды и высокая температура плавления. Как правило, она выше, чем у входящего в соединение металла.

Если он из переходных, размягчение может начинаться лишь при 3000 градусов Цельсия.

Интересно, что температура плавления поднимается вместе с номером группы, к коей принадлежит «сосед» углерода.

Наиболее тугоплавкими являются карбиды с элементами из 5-7-ой групп таблицы Менделеева .

Где карбид можно понять по структуре соединений. Их решетки, зачастую, дефектны.

Это значит, есть отклонения от теоретической схемы, разрывы и смещения. Именно поэтому свойства карбидов могут в 100, а то и 1000 раз разниться с высчитанными по формулам.

Так, многие соединения класса устойчивы к коррозии и не растворяются в большинстве кислот .

Виды карбидов

Основных видов карбидов три. Первый – ковалентные соединения. Валентность – предрасположенность к определенному числу химических связей.

Ковалентная связь – это перекрытие валентных облаков разных элементов. То есть, у них образуются общие электронные пары. Именно такие лежат в основе ковалентных карбидов.

К ковалентным относятся карбиды лишь двух элементов: брома и кремния . Оба соединения химически инертны. Их межатомные связи прочны.

В итоге, карбиды группы трудно расплавить, — решетка не хочет рушиться. Прочность связи делает оба соединения твердыми.

Карбид брома даже соперничает с алмазом . Некоторые образцы углеродного соединения царапают бриллианты, то есть, тверже них.

Карбид кремния алмаз не «побеждает», но свои достойные 8 баллов по шкале Мооса имеет.

Растворяют ковалентные карбиды лишь плавиковая кислота , концентрированная азотная и царская водка . Окисление карбидов группы происходит лишь при нагреве до 1000 градусов.

Второй вид карбидов – ионный. Его, так же, именуют солеобразным. Все образованны металлами 1-ой и 2-ой групп таблицы Менделеева.

В класс включен и карбид алюминия. Соединения группы разлагаются не только кислотами, но и водой.

Камешки, заставляющие «закипать» лужи, к примеру, — карбид кальция. Он, кстати, довольно токсичен, может разъесть слизистые. Зачем же его завозят на строительные рынки , поймем в следующей главе.

При реакции ионных карбидов с водой выделяется водород. В жидкости формируется и выпадает в осадок гидроксид металла.

Реакция протекает бурно. Резкий выброс на поверхность воды водорода и дает то самое пузырение.

Читайте также:  Должностные обязанности токаря фрезеровщика

Третий вид карбидов – ионно-ковалентно-металлические, попросту, металлоподобные.

Такие соединения формируются элементами 4-ой, 5-ой, 6-ой, 7-ой групп периодической системы. Исключения: — карбиды никеля, кобальта и железа.

Если у ковалентных карбидов химическая активность низкая, а у ионных – высокая, то у третьего вида соединений она средняя.

Примечательно строение молекул. Их основа – атомы металла. Атомы же углерода находятся в пустотах между ними.

Поэтому, к примеру, карбид вольфрама называют внедренным. Имеется в виду, что углерод внедрился в кристаллическую решетку металла.

Такое строение обеспечивает рекордную прочность и высокую температуру плавления. Еще одно известное соединение группы – карбид титана.

Применение карбида

Карбид титана стал основой безвольфрамовых, но столь же твердых сплавов.

К тому же, соединение служит покрытием инструментария, в основном, промышленного и строительного.

Такое напыление сводит к минимуму износ деталей и позволяет обрабатывать ими даже самые твердые материалы.

Карбид кремния, так же, используют в качестве абразива. В природном виде, коим является минерал муассанит, соединение цениться ювелирами , причем, выше чем близкий по виду и свойствам фианит .

Карбид кальция нужен при сварочных работах. Из соединения получают ацетилен. Карбид служит его источником, а заодно, и топливом для машин кислородной сварки.

Ацетилен – газ. Одного его достаточно для работы аппаратов. Но, есть еще и вода. Карбид кальция вступает с ней в бурную реакцию.

Итог – не только пузырьки, нравящиеся детям, но и обилие тепла – еще одного источника энергии.

Карбид бора применяют в качестве огнеупора. Температура плавления соединения составляет почти 2500 градусов.

Прочность карбида позволяет добавлять его в бронежилеты. Защитить материал способен не только от пуль, но и радиации.

Поэтому, один из ответов на вопрос, где взять карбид бора, — в защитных экранах, задерживающих излучение.

Список карбидов и их роли в жизни общества может занять многие страницы. Соединений несколько десятков и у каждого из них есть применение, причем, не одно. Нет и единственной схемы получения карбидов.

Придется ограничиться общими фразами. Однако, и в них есть толика полезной информации.

Получение карбидов

Большинство карбидов именно получают, а не добывают. Первый синтез проведен в начале 19-го столетия.

Англичанин по фамилии Дэви получил карбид калия. В 1863-ем создали карбид меди .

Он оказался неустойчивым, в отличие от третьего синтезированного соединения углерода с железом.

Смотря на опытные образцы, ученые не могли понять, где найти карбид за пределами лабораторий.

Минералы, в которых металлы соединены с углеродом открыли лишь в начале 20-го века.

Кроме муассанита , геологи нашли когенит – смесь карбида кобальта с никелем и железом .

Судя по дате открытия карбидных минералов, они не являются распространенными.

Поэтому, в промышленных масштабах героев статьи до сих пор синтезируют. Масса карбида может получиться, к примеру, из древесного угля и оксидов металлов.

Они преобразуются в карбиды при помощи вольтовой дуги и электрической печи .

Цена карбида

Карбид кальция купить предлагают примерно за 40-90 рублей за килограмм. Соединение углерода с бором стоит от 100-та рублей за кило.

Купить карбид кремния предлагают примерно по 160 рублей за 1000 граммов.

А вот за кило карбида гафния придется выложить около 21 000 рублей, причем, при оптовых закупках.

То есть, стоимость материала во многом зависит от присутствующего в нем металла, или неметалла. Существует даже карбид золота.

Он, кстати, способен взорваться при простом пересыпании порошка. Так что, даже за большую цену, доставить сырье потребителю – задача не из легких.

КАРБИДЫ (от латинского carbo – уголь) – соединения углерода с металлами, а также с бором и кремнием. Эти соединения обладают удивительным разнообразием физических и химических свойств. Так, карбид золота Au2C2 взрывается уже при попытке пересыпать его с листочка фильтровальной бумаги, на котором он был высушен. С другой стороны, карбиды некоторых элементов (например, бора и тантала) не разлагаются даже при температуре белого каления и настолько химически инертны, что на них не действует царская водка, а по твердости они приближаются к алмазу!

Впервые необычное соединение металла с углеродом (К2С2) получил в 1809 знаменитый английский химик Гемфри Дэви. В 1863 французский химик Марселен Бертло изучил свойства другого карбида – очень неустойчивого и легко взрывающегося карбида одновалентной меди Cu2C2. В 1878 немецкий металлург Ф.Мюллер, растворив образцы стали в разбавленной серной кислоте, выделил карбид железа Fe3C. Но только в конце 19 в. французский химик Анри Муассан, прославившийся получением фтора, синтезировал многие из этих необычных соединений и изучил их свойства. Он получал карбиды, нагревая до очень высокой температуры смеси древесного угля с разными металлами, их оксидами или карбонатами. Для этого он использовал жар вольтовой дуги в электрической печи собственной конструкции.

Карбиды, как оказалось, можно получить не только в лаборатории. Еще до работ Муассана австрийский ученый Э.Вайнсхенк в 1889 открыл в метеоритах минерал когенит, представляющий собой смешанный карбид железа, кобальта и никеля состава (FeNiCo)3C. А сам Муассан в 1904 обнаружил в метеорите, привезенном из каньона Диабло в штате Аризона, темно-зеленый минерал, представляющий собой карбид кремния SiC. Этот минерал в честь ученого назвали муассанитом.

Раньше карбиды классифицировали по их устойчивости к действию воды и кислот, а также по тому, какие газы выделяются при их разложении. Современная классификация учитывает тип химической связи между атомами в карбидах – именно от этого зависят в основном физические и химические свойства. В соответствии с этой классификацией, карбиды можно разделить на три группы, которые довольно сильно отличаются по своим свойствам.

К первой группе относятся так называемые солеобразные карбиды с ионной связью. Эти карбиды образуют щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиноиды. Их состав иногда соответствует типичным валентностям металлов (Al4C3), а иногда – нет (Ве2С). Многие ионные карбиды можно получить непосредственно из элементов (Са + 2С ® СаС2) или восстановлением оксидов углеродом (СаО + 3С ® СаС2 + СО). Ионный характер связи приводит к высокой температуре плавления; например, карбид кальция СаС2 плавится при 2300° С, карбид тория ThC2 – при 2655° С. Водой или разбавленными кислотами ионные карбиды легко разлагаются – гидролизуются. При этом образуются различные углеводороды и гидроксид металла. Самый известный пример – получение ацетилена гидролизом карбида кальция: СаС2 + 2Н2О ® Ca(OH)2 + С2Н2. Ацетилен выделяется также при гидролизе Na2C2, К2С2 и др. Поэтому такие карбиды можно рассматривать как производные ацетилена, в которых атомы водорода замещены атомами металла. При этом катионы металла и анионы С2 –2 размещаются в соответствующих узлах кристаллической решетки. Солеобразный характер этих карбидов подтверждается возможностью их электролиза в расплавленном состоянии. Интересно отметить, что чистый карбид кальция – бесцветные кристаллы, хотя увидеть их непросто, так как обычный технический продукт имеет цвет от бурого до черного.

Читайте также:  Из чего делают диски для болгарки

Взаимодействие карбидов щелочных металлов с водой протекает исключительно бурно. Так, если карбид калия просто облить водой, произойдет бурная реакция, которая сопровождается взрывом такой силы, что выделяющийся ацетилен сразу же разлагается с выделением угля. Чтобы провести реакцию К2С2 + 2Н2О ® 2КОН + С2Н2, надо медленно пропускать над карбидом водяной пар.

В ряде случаев карбиды ионного типа образуются непосредственно при пропускании ацетилена через растворы солей металлов. Так карбиды серебра, меди(I), золота и ртути, которые чаще называют ацетиленидами. Ацетилениды щелочных металлов можно получить действием ацетилена на свободные металлы. В сухом виде ацетилениды тяжелых металлов легко разлагаются со взрывом. Гидролиз ионных карбидов других металлов показывает, что они «происходят» из других углеводородов. Например, при гидролизе карбида алюминия выделяется метан: Al4C3 + 12H2O ® 4Al(OH)3 + 3CH4 (так же гидролизуется карбид бериллия Ве2С), а при гидролизе карбида магния получается метилацетилен: Mg2C3 + 4H2O ® 2Mg(OH)2+ НС≡С–СН3. Интересно, что карбид магния другого состава, MgC2, дает при гидролизе только ацетилен. Иногда при гидролизе ионных карбидов углеводороды выделяются совместно с водородом, который частично гидрирует непредельные углеводороды. С выделением почти равных количеств водорода и метана разлагается карбид марганца: Mn3C + 6H2O ® 3Mn(OH)2 + CH4 + H2. Карбиды редкоземельных металлов и тория при разложении разбавленными кислотами выделяют не чистый ацетилен, а его смесь с метаном, этиленом и другими углеводородами. Например, при гидролизе карбида церия СеС2 получается смесь ацетилена с метаном в соотношении 4:1, а также немного этилена и жидких и твердых углеводородов (состав продуктов зависит от условий проведения реакции). Еще больше жидких и твердых углеводородов дает при гидролизе карбид урана.

Выделение углеводородов при гидролизе карбидов позволило Д.И.Менделееву выдвинуть так называемую карбидную теорию происхождения нефти в глубинах Земли из неорганических веществ. По представлению Менделеева, в глубинах земного шара должны быть расплавленные металлы, в основном железо, которое с углеродом дает карбид. Во время горообразования в земной коре образуются трещины, по которым в глубины проникает вода. Воздействуя на карбид железа и карбиды других металлов, вода (в виде пара) образует углеводороды, например: 2FeC + 3H2O ® Fe2O3 + C2H4. Газообразные углеводороды по тем же трещинам поднимаются ближе к поверхности, где скапливаются в пористых пластах. Однако когда в 60-е гг. 20 в. был подробно изучен состав углеводородов нефти, оказалось, что смесь «искусственных углеводородов», образующихся при гидролизе карбидов, по своему составу резко отличается от природной смеси. Кроме того, все нефти, полученные неорганическим путем, оптически неактивны, тогда как природная нефть оптически активна. На основании этих, а также ряда других фактов неорганическая теория происхождения нефти была подвергнута критике, и в настоящее время многие ученые полагают, что нефть имеет биологическое происхождение.

Ко второй группе относятся карбиды, которые образуют переходные металлы IV–VII групп, а также кобальт, железо и никель. Это металлоподобные соединения с другой структурой. В них атомы углерода, имеющие небольшие размеры, не связаны друг с другом и располагаются в пустотах между атомами металлов. Различная упаковка атомов металла в кристаллической решетке приводит к разному составу карбидов даже для одного и того же металла; например, хром образует карбиды состава Cr3C2, Cr4C, Cr7C3 и др. Эти карбиды (их называют карбидами внедрения) часто отличаются большой твердостью и очень высокими температурами плавления. Например, карбиды тантала и гафния TaC и HfC – наиболее тугоплавкие из известных веществ (плавятся при 3985 и 3890° С соответственно).

Металлоподобные карбиды обладают высокой электропроводностью и очень высокой химической стойкостью к агрессивным средам (многие из них не растворяются даже в царской водке). Они используются для упрочнения чугуна и стали (карбиды железа, хрома, вольфрама, молибдена), а также для производства очень твердых сплавов, которые применяют для обработки металлов резанием (карбиды WC, TiC, TaC, VC, Cr3C2). Например, твердые наконечники резцов, сверл делают из победита – спеченного порошка карбида вольфрама WC с добавкой металлического кобальта. Очень важную роль играет карбид железа Fe3C (цементит) – твердые кристаллы, входящие в структуру чугуна и стали.

Карбид вольфрама WC используют также для изготовления буровых коронок, деталей аппаратуры для производства синтетических алмазов, для нанесения износостойких покрытий на поверхности металлов. Карбид титана интересен ярким проявлением нестехиометрии: состав этого соединения выражается формулой TiCх, где х колеблется в пределах от 0,49 до 1 (см. СТЕХИОМЕТРИЯ). Это вещество, как и карбид вольфрама, используют как компонент жаропрочных, жаростойких и твердых сплавов, для получения износостойких покрытий, для изготовления тугоплавких тиглей, в которых можно плавить почти любые металлы (сам карбид плавится при 3257° С). Карбидом титана выкладывают внутренние стенки высокотемпературных печей.

К третьей группе относятся ковалентные карбиды. Их образуют кремний и бор – соседи углерода по периодической таблице, близкие к нему как по размеру атомов, так и по электроотрицательности. Карбид кремния SiC (техническое название – карборунд) в чистом виде – бесцветные кристаллы, но примеси часто окрашивают его в различные цвета, вплоть до черного. По своей структуре это соединение аналогично алмазу; решетку карбида кремния можно получить, если в немного расширенной решетке алмаза заменить половину атомов углерода на атомы кремния. Это вещество обладает очень высокой твердостью; помимо этого оно имеет свойства полупроводника. Из него делают шлифовальные бруски и круги, огнеупорные материалы для печей и литейных машин, нагревательные элементы для электропечей, полупроводниковые диоды.

Бор образует по два карбида с точно известной структурой – В4С и В13С2. Наибольшее значение имеет первый из них – черные блестящие кристаллы, которые по твердости уступают лишь алмазу и нитриду бора BN. Этот карбид применяют для изготовления абразивных и шлифовальных материалов и в качестве полупроводника. Карбид, обогащенный изотопом 10 В, используется как поглотитель нейтронов в ядерных реакторах.

>

Оцените статью
Adblock detector