Какое выражение определяет потенциальную энергию сжатой пружины

А. mv²/2
Б.mv
В.mgh
Г. kx²/2
2. Каково наименование единицы кинетической энергии,
выраженное через основные единицы Международной системы?
А.1кг·м
Б.1 кг·м/с
В.1кг·м²/с
Г.1кг·м²/с²
3. Чему равна кинетическая энергия тела массой 3 кг, движущегося со скоростью 4 м/с?

А. 6 Дж. Б. 12 Дж. В.24Дж. Г.48Дж.

4. Как изменится потенциальная энергия упруго
деформированного тела при увеличении его деформации в три раза?

À. Не изменится. Б. Увеличится в 3 раза. . Увеличится в 9 раз.
Г. Увеличится в 27 раз.

Два автомобиля с одинаковыми массами m движутся со скоростями v и 3v относительно
Земли в одном направлении. Чему равна кинетическая энергия второго автомобиля в
системе отсчета, связанной с первым автомобилем?

А.mv²
Б.2mv²
В.3mv²
Г.4mv²
6.Каково наименование единицы работы, выраженное
через основные единицы Международной системы?
А.1кг
Б.1кг·м/с
В.1кг·м/с²
Г.1кг·м²/с²
7.По какой формуле следует рассчитывать работу си­лы F, если между направлением
силы и перемещения S угол a ?
А.(F/S)·cosα
Б.F·S·sinα
В.F·S·cosα
Г.(F·S)·sinα

9.
Тело массой 1 кг силой 30 Н поднимается на высо­ту 5 м. Чему равна работа этой силы?

А .0 Дж. Б. 50 Дж.
В. 100 Дж. Г. 150
Дж.

Кинетическая энергия тела в момент бросания равна
200 Дж. Определите, до какой высоты от поверхности земли может подняться тело,
если его масса равна 500 г.

Башенный кран поднимает бетонную плиту массой 2 т
на высоту 15 м. Чему равна работа силы тяжести, действующей на плиту?

Если к растянутой пружине прикрепить некоторое тело, то пружина будет действовать на него с некоторой силой, под действием которой тело начнет смещаться. Следовательно, будет совершена работа

Сила, с которой пружина действует на тело, не является постоянной, поэтому для вычисления работы воспользуемся графическим методом. Построим график зависимости силы упругости F = kx от координаты, которая является прямой линией

Площадь выделенного треугольника под графиком равна максимальной работе, которую может совершить пружина. Понятно, что она равна:

Для того чтобы пружине приписать потенциальную энергию, равную максимальной работе (1), необходимо показать, что эта работа не зависит от траектории движения тела. Чтобы доказать это утверждение, достаточно рассмотреть работу на малом участке перемещения Δr при движении по произвольной траектории

В данном случае эта работа полностью определяется изменением деформации пружины х, поэтому она не зависит от траектории движения тела.

Таким образом, силы упругости, подчиняющиеся закону Гука, являются потенциальными, и потенциальная энергия деформированной пружины определяется формулой

Нулевой уровень потенциальной энергии, рассчитываемой по формуле (2), соответствует недеформированной пружине.
Подсчитаем, какую минимальную работу следует совершить, чтобы пружину жесткостью k растянуть на величину x

Чтобы деформировать пружину, к ней необходимо приложить внешнюю силу. Очевидно, что эта работа будет минимальна в том случае, если внешняя приложенная сила в любой точке равна силе упругости, действующей со стороны пружины. Поэтому работа этой силы будет равна: А = kx2/2, то есть увеличению потенциальной энергии пружины.

19. Потенциальная энергия гравитационного притяжения

Все тела, обладающие массой, притягиваются друг к другу с силой, подчиняющейся закону всемирного тяготения И. Ньютона. Следовательно, притягивающиеся тела обладают энергией взаимодействия

Покажем, что работа гравитационных сил не зависит от формы траектории, то есть гравитационные силы также являются потенциальными. Для этого рассмотрим движение небольшого тела массой m, взаимодействующего с другим массивным телом массой М, которое будем полагать неподвижным
Как следует из закона Ньютона, сила F, действующая между телами, направлена вдоль линии, соединяющей эти тела. Поэтому при движении телаm по дуге окружности с центром в точке, где находится тело М, работа гравитационной силы равна нулю, так как векторы сил и перемещения все время остаются взаимно перпендикулярными. При движении вдоль отрезка, направленного к центру тела М, векторы перемещения и силы параллельны, поэтому в этом случае при сближении тел работа гравитационной силы положительна, а при удалении тел − отрицательна. Далее заметим, что при радиальном движении работа силы притяжения зависит только от начального и конечного расстояний между телами. Так, при движении по отрезкам (рис. 162) DE и D1E1 совершенные работы равны, так как законы изменения сил от расстояния на обоих отрезках одинаковы. Наконец, произвольную траекторию тела m можно разбить на набор дуговых и радиальных участков (например, ломаная ABCDE).

Читайте также:  Насадки для паяльника полипропилена

При движении по дугам работа равна нулю, при движении по радиальным отрезкам работа не зависит от положения этого отрезка, следовательно, работа гравитационной силы зависит только от начального и конечного расстояний между телами, что и требовалось доказать.
Заметьте, что при доказательстве потенциальности мы воспользовались только тем фактом, что гравитационные силы являются центральными, то есть направленными вдоль прямой, соединяющей тела, и не упоминали о конкретном виде зависимости силы от расстояния. Следовательно, все центральные силы являются потенциальными.
Мы доказали потенциальность силы гравитационного взаимодействия между двумя точечными телами. Но для гравитационных взаимодействий справедлив принцип суперпозиции: сила, действующая на тело со стороны системы точечных тел, равна сумме сил парных взаимодействий, каждая из которых является потенциальной, следовательно, и их сумма также потенциальна. Действительно, если работа каждой силы парного взаимодействия не зависит от траектории, то и их сумма также не зависит от формы траектории. Таким образом, все гравитационные силы потенциальны.
Нам осталось получить конкретное выражение для потенциальной энергии гравитационного взаимодействия.
Для вычисления работы силы притяжения между двумя точечными телами достаточно подсчитать эту работу при движении вдоль радиального отрезка при изменении расстояния от r1 до r2

Очередной раз воспользуемся графическим методом, для чего построим зависимость силы притяжения F = GMm/r2 от расстояния r между телами. Тогда площадь под графиком этой зависимости в указанных пределах и будет равна искомой работе

Вычисление этой площади представляет собой не слишком сложную задачу, требующее, однако, определенных математических знаний и навыков. Не вдаваясь в детали этого расчета, приведем конечный результат: для данной зависимости силы от расстояния площадь под графиком, или работа силы притяжения, определяется формулой

А12 = GMm(1/r2 − 1/r1).

Так как мы доказали, что гравитационные силы являются потенциальными, эта работа равна уменьшению потенциальной энергии взаимодействия, то есть

А12 = GMm(1/r2 − 1/r1) = −ΔU = −(U2 − U1).

Из этого выражения можно определить выражение для потенциальной энергии гравитационного взаимодействия:

При таком определении потенциальная энергия отрицательна и стремится к нулю при бесконечном расстоянии между телами: U(∞) = 0. Формула (1) определяет работу, которую совершит сила гравитационного притяжения при увеличении расстояния от r до бесконечности, а так как при таком движении векторы силы и перемещения направлены в противоположные стороны, то эта работа отрицательна. При противоположном движении, при сближении тел от бесконечного расстояния до расстояния r, работа силы притяжения будет положительна. Эту работу можно подсчитать по определению потенциальной энергии:

Подчеркнем, что потенциальная энергия является характеристикой взаимодействия, по меньшей мере, двух тел. Нельзя говорить о том, что энергия взаимодействия «принадлежит» одному из тел, или каким образом «разделить эту энергию между телами». Поэтому когда мы говорим об изменении потенциальной энергии, мы подразумеваем изменение энергии системы взаимодействующих тел. Однако в некоторых случаях допустимо все же говорить об изменении потенциальной энергии одного тела. Так, при описании движения небольшого, по сравнению с Землей, тела в поле тяжести Земли говорим о силе, действующей на тело со стороны Земли, как правило, не упоминая и не учитывая равную силу, действующую со стороны тела на Землю. Дело в том, что при громадной массе Земли изменение ее скорости исчезающее мало. Поэтому изменение потенциальной энергии взаимодействия приводит к заметному изменению кинетической энергии тела и бесконечно малому изменению кинетической энергии Земли. В такой ситуации допустимо говорить о потенциальной энергии тела вблизи поверхности Земли, то есть всю энергию гравитационного взаимодействия «приписать» небольшому телу. В общем случае, можно говорить о потенциальной энергии отдельного тела, если остальные взаимодействующие тела неподвижны.

Читайте также:  Жидкость для холодного воронения

Мы неоднократно подчеркивали, что точка, в которой потенциальная энергия принимается равной нулю, выбирается произвольно. В данном случае такой точкой оказалась бесконечно удаленная точка. В некотором смысле этот непривычный вывод может быть признан разумным: действительно, на бесконечном расстоянии исчезает взаимодействие − исчезает и потенциальная энергия. С этой точки зрения логичным выглядит и знак потенциальной энергии. Действительно, чтобы разнести два притягивающиеся тела, внешние силы должны совершить положительную работу, поэтому в таком процессе потенциальная энергия системы должна возрастать: вот она возрастает, возрастает и . становится равной нулю!
Если притягивающиеся тела соприкасаются, то сила притяжения не может совершать положительную работу, если же тела разнесены, то такая работа может быть совершена при сближении тел. Поэтому часто говорят о том, что притягивающиеся тела обладают отрицательной энергией, а энергия отталкивающихся тел положительна. Это утверждение справедливо только в том случае, если нулевой уровень потенциальной энергии выбирается на бесконечности. Так, если два тела связаны пружиной, то при увеличении расстояния между телами между ними будет действовать сила притяжения, тем не менее, энергия их взаимодействия является положительной. Не забывайте, что нулевому уровню потенциальной энергии соответствует состояние недеформированной пружины а не бесконечность)..

Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

Понятие потенциальной энергии пружины

При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

  1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
  2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
  3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.

Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

Читайте также:  Чем заменить трубочку для монтажной пены

Закон сохранения механической энергии

Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

Динамика твердого тела

Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев.

Момент силы и момент импульса относительно оси

Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

Момент импульса – величина, которая применяется для определения количества вращательного движения.

Среди особенностей подобного показателя можно отметить следующее:

  1. Масса вращения. Объект может характеризоваться различной массой.
  2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
  3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

Уравнение движения вращающегося тела

Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

  1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
  2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
  3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.