- Назначение, устройство и описание осциллографа
- Как работает осциллограф?
- Осциллограф С1-94.
- Осциллограф на PIC18F2550 своими руками — схема, инструкция по сборке
- Схема осциллографа на PIC18F2550
- Необходимые детали для сборки осциллографа на PIC18F2550 и прошивка
- Цифровой осциллограф RS232 для ПК
- Схема цифрового осциллографа для компьютера
- Необходимые радиоэлементы
- Программное обеспечение
- Монтаж
- Осциллограф своими руками на AVR — инструкция по сборке, характеристики
- Схема осциллографа на AVR
- Необходимые радиоэлементы
- Прошивка ATmega32 и настройка
- Использование
Цифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, — это высокая цена.
Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.
На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в этой статье.
При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.
Рисунок 1. Осциллограф С1-73
Что измеряет осциллограф
Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.
Рисунок 2. Осциллограф С1-101
Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.
Здесь следует вспомнить, что существуют специальные высокочастотные осциллографы, входное сопротивление которых всего 50 Ом. В радиолюбительской практике такие приборы не находят применения. Поэтому далее речь пойдет об обычных универсальных осциллографах.
Полоса пропускания канала Y
Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, — от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.
При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.
Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих
Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.
На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.
Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.
У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.
Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.
В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.
Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.
Виды исследуемых сигналов и их параметры
Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.
Рисунок 6. Формы электрических колебаний
Периодические сигналы. Характеристики сигналов
Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.
Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.
Рисунок 7. Периодические колебания
Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.
Кроме компонентов X и Y осциллограмма содержит еще компонент Z – интенсивность, или попросту яркость (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.
Рисунок 8. Три компонента исследуемого сигнала
Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.
В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.
Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.
Скважность и коэффициент заполнения
Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, — величина безразмерная: S= T/τ.
В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.
Рисунок 9. Осциллограмма меандра D=50%
Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»
Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.
Рисунок 10. Прямоугольный импульс D=10%
Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 – величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.
Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.
Измерение напряжения прямоугольного импульса
Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.
Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.
Рисунок 11. Измерение амплитуды прямоугольного импульса
Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.
Что еще можно увидеть в прямоугольном импульсе
Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.
Рисунок 12. Реальный прямоугольный импульс
Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.
Рисунок 13. Параметры прямоугольного импульса
На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.
По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.
На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.
Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.
Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.
С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то — же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.
Рисунок 15. Параметры синусоиды
Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.
Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.
Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.
Как осциллографом измерить ток
В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.
Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.
Схема для измерения тока через конденсатор показана на рисунке 16.
Рисунок 16. Измерение тока через конденсатор
Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.
Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода
При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.
Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.
Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: катушка индуктивности, обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.
Назначение, устройство и описание осциллографа
Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: "Какой самый главный прибор на вашем рабочем месте?" Ответ будет однозначным: "Конечно, осциллограф!". И это действительно так.
Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.
Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.
Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.
Осциллограф – это своего рода телевизор, который показывает электрические сигналы.
Как работает осциллограф?
Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.
На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.
Исследуемый сигнал подаётся на вход "Y" канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.
В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.
Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.
С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины "Y" и обеспечивает отклонение луча по вертикали.
Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины "X" ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление ("Время/дел"), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).
Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:
Синхронизация от исследуемого сигнала.
Синхронизация от сети.
Синхронизация от внешнего источника.
Первый вариант наиболее удобный и он используется чаще всего.
Осциллограф С1-94.
Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.
В отличие от своих более "навороченных" собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.
Справа от экрана сверху вниз.
Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.
Кнопка «Сеть». Кнопка включения прибора.
Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.
Кнопка режима «Ждущ-Авт».
Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.
Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.
Кнопка установки синхронизации «Внутр-Внешн».
Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.
Кнопка выбора "Открытого" и "Закрытого" входа.
Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем "Переменный и постоянный". Этот режим называется "Открытым", так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.
При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать "закрытый" вход (
). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.
Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может "дёрнуть". Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело ("рука" — "рука") и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.
По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.
Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу "Y" осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).
Также на панели осциллографа имеются:
Ручка «Перемещение луча по горизонтали».
Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.
Также есть и ручка «Перемещение луча по вертикали».
С помощью её можно отрегулировать положение развёртки на экране по вертикали.
Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.
А вот ручка «Уровень синхронизации» необходима для того, чтобы "остановить" осциллограмму сигнала на экране.
Поворотом этой ручки добиваются того, чтобы изображение сигнала "застыло", а не "убегало". Иногда, чтобы поймать изображение с помощью ручки "Уровень" приходится изменить время развёртки переключателем Время/дел.
Входной разъём "Y" , к которому подключается измерительный щуп или внешний делитель выглядит так.
Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.
В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.
Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.
- Осциллограф на PIC18F2550
- Цифровой осциллограф для ПК
- На AVR — инструкция по сборке, характеристики
- Видео
Рассмотрим 3 рабочие схемы осциллографов. Первый прибор собран на микроконтроллере PIC18F2550. Второй осциллограф — цифровой, в основе третьего — микроконтроллер AVR. Поговорим о каждом по порядку.
Осциллограф на PIC18F2550 своими руками — схема, инструкция по сборке
Осциллограф на PIC18F2550 измеряет среднее, максимальное, минимальное, пиковое напряжения и пересечение нулевого уровня. Осциллограф имеет встроенную функцию триггера, который может быть использован для остановки сигнала для его детального изучения. Масштаб времени для отображения может быть легко изменён функцией changeTimeDivision.
Осциллограф измеряет напряжение в пределах 0–5В, 0–2.5В и 0–1,25. Основным недостатком этого осциллографа является низкая частота дискретизации (
60 кГц), а также тот факт, что входы ограничены ограничениями АЦП микроконтроллера. Тем не менее, это очень хороший прибор и первым мы рассмотрим именно его схему.
Схема осциллографа на PIC18F2550
Исходники и прошивку можно будет скачать ниже. Теперь давайте детальнее остановимся на каждом блоке схемы.
Напряжение поступает с 9-вольтовой батареи на интегральный стабилизатор напряжения TC1262-5.0V для обеспечения стабильных 5В для питания микроконтроллера и дисплея. На выходе стоит 1мкФ конденсатор.
Графический ЖК дисплей AGM1264F с разрешением 128х64 пикселей оснащен встроенными контроллером KS0108. Он имеет светодиодную подсветку и генератор отрицательного напряжения для управления.
Вывод A0 настроен на аналоговый вход. Обратите внимание, что сопротивление источника сигнала влияет на напряжение смещения на аналоговом входе. Максимально рекомендованное сопротивление составляет 2.5 кОм.
Микроконтроллер PIC18F2550 работает на частоте 48 МГц от внутреннего генератора. R1 представляет собой нагрузочный резистор, необходимый для работы. C1 является стабилизирующим конденсатором. Компонент пометкой «RES» является 20 MHz резонатором.
Выводы USART должны быть подсоединены к RS-232 конвертеру для подключения к ПК для обновления прошивки. После этого он может быть отключен.
Необходимые детали для сборки осциллографа на PIC18F2550 и прошивка
- МК PIC 8-бит (IC1) — PIC18F2550
- Линейный регулятор (IC2) — TC1264, 5 Вольт.
- Конденсатор (С1) — 0.22 мкФ.
- Электролитический конденсатор (С2) — 1 мкФ.
- 2 резистора (R1, R3) — 3.3 кОм и 5 Ом соответственно.
- Подстроечный резистор (R2) — 10 кОм.
- Кварцевый резонатор (RES) — 20 МГц.
- LCD-дисплей — AGM1264F.
- Батарея питания (G1) — 9 В
- 3 разъёма — JP1 для подключения дисплея, JP2 для обновления прошивки (RS-232) и JP3 для входа аналогового сигнала.
Микроконтроллер должен быть прошит файлом «SAC_tinybld18F2550usb _20MHz_115200_48MHz». Его можно скачать ниже.
Видео, как работает осциллограф на PIC18F2550:
Цифровой осциллограф RS232 для ПК
Рассмотрим простое решение для создания цифрового компьютерного осциллографа. Устройство построено на базе восьмиразрядного процессора PIC12F675.
Схема цифрового осциллографа для компьютера
Ниже представлена структурная схема осциллографа:
Процессор работает на частоте 20 МГц. Микроконтроллер непрерывно измеряет входное напряжение, преобразовывает его и отправляет цифровое значение на последовательный порт компьютера. Скорость передачи данных последовательного порта — 115кБит и, как показано на следующем рисунке, данные сканируются и отправляются с частотой около 7,5 кГц (134 мкс).
Вот принципиальная схема самого цифрового осциллографа:
Основа схемы — микроконтроллер PIC12F675 (микросхема U2), который работает с тактовой частотой 20 МГц кристалла Y1. J1 — стандартный разъем для подключения питания в 9–12 В, которое затем стабилизируется на U1 до 5 В для питания процессора.
- Узнайте, как сделать щуп для осциллографа своими руками
После U2 в схему добавляется простой преобразователь TTL уровня с последовательным портом RS232 персонального компьютера. Он построен на базе транзистора BC337 (Q1) и резисторов R1 и R3. Вход 5 микроконтроллера ведет к переключателю S1. В своей основной позиции (1–2) прибор переключается в режим осциллографа постоянного тока (DC измерений), который способен отображать входной сигнал 0–5В. Во второй позиции — в режим осциллографа переменного тока. В этом положении максимальное напряжение — от -2,5 до +2,5 В. Конденсатор С6 подойдет керамический 22000nF, чтобы наблюдать низкие частоты без особых искажений.
При необходимости можно добавить дополнительные входной аттенюатор (сплиттер), или ОУ.
Необходимые радиоэлементы
- Линейный регулятор (U1) — LM78L05.
- МК PIC 8-бит (U2) — PIC12F675 (675-I/P).
- Биполярный транзистор (Q1) — BC337.
- 6 конденсаторов — С1, С2, С5 (3х0.1 мкФ); С3, С4 (2х22 пФ); С6 (22 мкФ)
- 4 резистора — R1, R3 (2х1 кОм) и R2, R4 (2х270 кОм).
- Кварцевый резонатор (Y1) — 20 МГц.
- Переключатель (S1)
- 3 разъема — J1 питания, J2 RS232, J3 входа сигнала.
Программное обеспечение
Для управления на Windows доступна простая программа на Visual Basic. Её можно скачать в архиве ниже.
Программа запускается сразу и ожидает появления данных на последовательном порте COM1. Слева — четыре ползунка, используемые для измерения периода и напряжения сигнала. Затем идут вкл/выкл синхронизации, поля для масштабирования или изменения значений размера выборки.
Монтаж
При сборке можно не делать печатную плату, а смонтировать все в небольшой пластиковой коробке навесным монтажом. Корпус должен иметь отверстия для разъема RS232 переключателя, входного гнезда и гнезда питания.
Прошивку для процессора можно скачать в конце статьи. Биты конфигурации (fuse) в процессе программирования должны быть установлены следующим образом:
Вот фото готового прототипа цифрового осциллографа:
Ниже вы можете скачать исходник, прошивку и ПО для Windows.
Осциллограф своими руками на AVR — инструкция по сборке, характеристики
Характеристики осциллографа на AVR:
- Частота измерения: 10 Гц–7.7 кГц.
- Макс. входное напряжение: 24В AC/30В DC.
- Напряжение питания: 12В DC.
- Разрешение экрана: 128×64 пикселей.
- Область экрана осциллограммы: 100×64 пикселей.
- Информационная область экрана: 28×64 пикселей.
- Режим триггера: автоматический.
Рассмотрим проект осциллографа с использованием МК PIC18F2550 и графического LCD с контроллером KS0108. В качестве среды разработки здесь использована WinAVR, которая основывается на open source AVR-GNU компиляторе и прекрасно работает с AVR Studio 4. Графическую библиотека разработана специально для данного проекта.
При измерении прямоугольного сигнала, максимальная частота, при которой можно увидеть хорошую осциллограмму составляет около 5 кГц. Для других форм сигналов (синусоида или треугольный сигнал) максимальная частота составляет около 1 кГц.
Схема осциллографа на AVR
Принципиальная схема AVR-осциллографа приведена ниже:
Напряжение питания схемы составляет 12 вольт постоянного тока. Из этого напряжения, в дальнейшем получается еще 2 напряжения: +8.2В для IC1 и +5В — для IC2, IC3.
- Схема светодиодного осциллографического пробника
Устройство может измерять входное напряжение от +2.5В до -2.5В или от 0 до +5В, зависящее от позиции переключателя S1 (выбор типа входного тока: постоянный или переменный). При использовании пробника 1:10, входное напряжение соответственно может быть увеличено в 10 раз. Кроме того, переключателем S2 можно установить дополнительно деление напряжения на 2.
Необходимые радиоэлементы
- Операционный усилитель (IC1) — LM358.
- LCD-дисплей (IC2) — DEM128064A (128×64, контроллер KS0108).
- МК AVR 8-бит (IC3) — ATmega32.
- Линейный регулятор (IC4) — LM7805.
- Стабилитрон (D1) — 1N4738A, 8.2В.
- Выпрямительный диод (D2) — 1N4007.
- 7 конденсаторов — C1 (470 нФ); C2 (27 пФ); C4, C7, C9 (3х100 нФ); C5, C6 (2х22 пФ).
- 2 электролитических конденсатора — C3 (22 мкФ 16 В) и C8 (100 мкФ 25 В).
- 7 резисторов — R1, R2, R4 (3х1 МОм); R3, R5 (2х390 кОм); R6 (56 Ом); R7 (220 Ом).
- 2 подстроечных резистора (P1, P2) — 10 кОм и 22 кОм соответственно.
- Кварц (X1) — 16 МГц.
- 3 переключателя (S1, S2, S5).
- 5 кнопок (S3, S4, S6–S8) — замыкающие.
- 2 разъёма (K1, K2) — 2 контакта вход сигнала, 2 контакта питание.
Прошивка ATmega32 и настройка
Файл прошивки: AVR_oscilloscope.hex, можно будет скачать ниже. При выборе фьюзов необходимо указать использование внешнего кварца. После этого необходимо обязательно отключить JTAG интерфейс. Если этого не сделать, то на осциллографе будет отображаться экран инициализации, а после он будет уходить в перезагрузку.
Для настройки прибора нужно выполнить всего 2 вещи: настроить контрастность LCD при помощи подстроечного резистора Р2 и выставить центр осциллограммы при помощи подстроечного резистора Р1.
Использование
Вы можете перемещать луч осциллограммы вверх или вниз путем нажатия кнопок S8 и S4. Один квадрат на экране, соответствует 1В.
При помощи кнопок S7 и S3 можно увеличивать или уменьшать частоту измерений. Минимальная частота формы сигнала, которая может быть отображена на LCD составляет 460 Гц. Если необходимо посмотреть сигнал с более низкой частотой, например, 30 Гц, то необходимо нажать S7 для сжатия осциллограммы или S3 — для растяжения.
В осциллографе используется автоматический режим триггера. Это означает, что если входной сигнал повторяющийся (к примеру треугольник) то триггер работает хорошо. Но если форма сигнала постоянно меняется (к примеру какая-то последовательность данных), то для фиксации изображения необходимо нажать кнопку S6. Повторное нажатие S6 возвращает в нормальный режим.
Фото готового AVR осциллографа:
Видео работы осциллографа на AVR: