Как отличить диод шоттки от обычного диода

Диод Шоттки — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки.

В диодах Шоттки в качестве барьера Шоттки используется переход металл-полупроводник, в отличие от обычных диодов, где используется p-n-переход. Переход металл-полупроводник обладает рядом особенных свойств (отличных от свойств полупроводникового p-n-перехода). К ним относятся: пониженное падение напряжения при прямом включении, высокий ток утечки, очень маленький заряд обратного восстановления. Последнее объясняется тем, что по сравнению с обычным p-n-переходом у таких диодов отсутствует диффузия, связанная с инжекцией неосновных носителей, т.е. они работают только на основных носителях, а их быстродействие определяется только барьерной ёмкостью.

Диоды Шоттки изготавливаются обычно на основе кремния (Si) или арсенида галлия (GaAs), реже — на основе германия (Ge). Выбор металла для контакта с полупроводником определяет многие параметры диода Шоттки. В первую очередь — это величина контактной разности потенциалов, образующейся на границе металл-полупроводник. При использовании диода Шоттки в качестве детектора она определяет его чувствительность, а при использовании в смесителях — необходимую мощность гетеродина. Поэтому чаще всего используются металлы Ag, Au, Pt, Pd, W, которые наносятся на полупроводник и дают величину потенциального барьера 0,2. 0,9 эВ.

Допустимое обратное напряжение выпускаемых диодов Шоттки ограничено 1200 вольтами (CSD05120 и аналоги), на практике большинство диодов Шоттки применяются в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Содержание

Свойства диодов Шоттки [ править | править код ]

Номенклатура диодов Шоттки [ править | править код ]

Диоды Шоттки — составные части современных дискретных полупроводниковых приборов:

  • МОП-транзисторы со встроенным обратным диодом Шоттки (впервые выпущены компанией International Rectifier под торговой маркой FETKY в 1996) — основной компонент синхронных выпрямителей. В отличие от обычного МОП-транзистора, обратный диод которого отличается высоким прямым падением напряжения и посредственными временны́ми характеристиками (так как представляет собой обычный диод на p-n переходе, образуемый областями стока и подложкой, объединённой с истоком), использование обратного диода Шоттки позволяет строить силовые синхронные выпрямители с частотой преобразования в сотни кГц и выше. Существуют приборы этого класса со встроенными драйверами затворов и устройствами управления синхронным выпрямлением.
  • Так называемые ORing [3] -диоды и ORing-сборки — силовые диоды и диодные сборки, применяемые для объединения параллельных источников питания общей нагрузки в устройствах повышенной надёжности (логическое ИЛИ по питанию). Отличаются особо низким, нормируемым прямым падением напряжения. Например, специализированный миниатюрный диод MBR140 (30 В, 1 А) при токе 100 мА имеет прямое падение напряжения не более 360 мВ при +25 °C и 300 мВ при +85 °C. ORing-диоды характеризуются относительно большой площадью p-n-перехода и низкими удельными плотностями тока.

Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения. Эта низкая динамика наблюдается при прямом введении компонента в цепь. На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.


Внешний вид

Разновидности диодов Шоттки

Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:


Сдвоенный диод

На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.

Особенности и принцип работы диода Шоттки

Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?

Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.

Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.

Металл-полупроводник: принцип работы перехода


Структура элемента

Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:

  • минимальным обратным током;
  • стремящейся к нулю собственной емкостью;
  • обратным напряжением самой низкой допустимой величины;
  • при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).

В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.

Преимущества и недостатки диода Шоттки

Несомненными преимуществами подобных полупроводниковых изделий являются:

  • надежное удерживание электротока;
  • минимальная емкость барьера обеспечивает длительную эксплуатацию;
  • быстродействие.

Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.

Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.

Маркировка и схема диода Шоттки

На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.


Обозначения диодов

В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.

Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.

Работа в ИБП

Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.

Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.

При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:

  • утечке на корпус;
  • электроприборе.

Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые "подергивания" вентилятора. В случае пробоя напряжения в блоке питания полностью исключены. Так можно определить вероятную причину нерабочего состояния диода Шоттки, но для окончательного решения понадобится диагностика.

Для диагностики следует выполнить шаги:

  1. Выпаять элемент и схемы.
  2. Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
  3. Выполнить проверку мультиметром.


Проверка мультиметром

Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее. При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме "диод". Потому лучше устанавливать режим "омметр" и заменить элемент при демонстрации сопротивления. Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену. Доступная стоимость диодов Шоттки позволяет сделать это практически в любой момент без особых трат.

Важно! Если для проверки работоспособности диода Шоттки используется типовой мультиметр, нужно учитывать указанный сбоку показатель электротока.

Применение

Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:

  • бытовых электроприборов;
  • стабилизаторов напряжения;
  • во всем спектре радио- и телеаппаратуры;
  • в другой электронике.

Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.

Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.

Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.

Диод Шоттки – это полупроводниковый электрический выпрямительный элемент, где в качестве барьера используется переход металл-полупроводник. В результате приобретаются полезные свойства: высокое быстродействие и малое падение напряжения в прямом направлении.

Из истории открытия диодов Шоттки

Выпрямительные свойства перехода металл-полупроводник впервые замечены в 1874 году Фердинандом Брауном на примере сульфидов. Пропуская ток в прямом и обратном направлении, он отметил разницу в 30%, что в корне противоречило известному закону Ома. Браун не смог объяснить происходящего, но, продолжив исследования, установил, что и сопротивление участка пропорционально протекающему току. Что также выглядело необычно.

Опыты повторились физиками. К примеру, Вернер Сименс отметил похожие свойства селена. Браун установил, что свойства конструкции проявляются наиболее ярко при небольшом размере контактов, приложенных к кристаллу сульфида. Исследователь применял:

  • подпружиненную проволоку с давлением 1 кг;
  • ртутный контакт;
  • металлизированную медью площадку.

Так на свет появился точечный диод, в 1900 году помешавший нашему соотечественнику Попову взять патент на детектор для радио. В собственных работах Браун излагает исследования марганцевой руды (псиломелана). Прижав контакты к кристаллу струбциной и изолировав губки от токонесущей части, учёный получил превосходные результаты, но применения эффекту в то время не нашлось. Описав, необычные свойства сульфида меди, Фердинанд положил начало твердотельной электронике.

За Брауна практическое применение нашли единомышленники. Профессор Джагдиш Чандра Бос сообщил 27 апреля 1899 года о создании первого детектора-приёмника для работы в паре с радиопередатчиком. Он использовал галенит (оксид свинца) в паре с простым проводом и поймал волны миллиметрового диапазона. В 1901 году запатентовал своё детище. Не исключено, что под влиянием слухов о Попове. Детектор Боса использован в первой трансатлантической радиопередаче Маркони. Аналогичного рода устройства на кристалле кремния запатентовал в 1906 году Гринлиф Уиттер Пиккард.

Гринлиф Уиттер Пиккард

В своей речи на вручении Нобелевской премии в 1909 году Браун отметил, что не понимает принципов открытого им явления, зато обнаружил целый ряд материалов, проявляющих новые свойства. Это уже упомянутый выше галенит, пирит, пиролюзит, тетраэдрит и ряд прочих. Перечисленные материалы привлекли внимание по простой причине: проводили электрический ток, хотя считались соединениями элементов таблицы Менделеева. Прежде подобные свойства считались прерогативой простых металлов.

Наконец, в 1926 году уже появились первые транзисторы с барьером Шоттки, а теорию под явление подвёл Уильям Брэдфорд Шокли в 1939 году. Тогда же Невилл Франсис Мот объяснил явления, происходящие в на стыке двух материалов, вычислив ток диффузии и дрейфа основных носителей заряда. Вальтер Шоттки дополнил теорию, заменив линейное электрическое поле затухающим и добавив представление о донорах ионов, расположенных в приповерхностном слое полупроводника. Объёмный заряд на границе раздела под слоем металла назвали именем учёного.

Схожие попытки подведения теории под имеющийся факт предпринимал Давыдов в 1939 году, но неправильно дал лимитирующие факторы для тока и допустил прочие ошибки. Самые правильные выводы сделал Ханс Альбрехт Бете в 1942 году, увязавший ток с термоэлектронной эмиссией носителей сквозь потенциальный барьер на границе двух материалов. Таким образом, современное название явления и диодов должно бы носить имя последнего учёного, теория Шоттки обнаруживала изъяны.

Теоретические исследования упираются в сложность измерения работы выхода электронов из материала в вакуум. Даже для химически инертного и стабильного металла золота определённые показания разнятся от 4 до 4,92 эВ. При высокой степени вакуума, в отсутствие ртути от насоса или масляной плёнки, получаются значения в 5,2 эВ. С развитием технологии в будущем предвидятся значения точнее. Иным вариантом решения станет использование сведений об электроотрицательности материалов для правильного предсказания событий на границе перехода. Эти величины (по шкале Поллинга) известны с точностью до 0,1 эВ. Из сказанного понятно: сегодня правильно предсказать высоту барьера по указанным методикам и, следовательно, выпрямительные свойства диодов Шоттки не представляется возможным.

Лучшие способы определения высоты барьера Шоттки

Высоту допустимо определить по известной формуле (см. рис). Где С – коэффициент, слабо зависящий от температуры. Зависимость от приложенного напряжения Va, несмотря на сложную форму считается почти линейной. Угол наклона графика составляет q/ kT. Высоту барьера определяют по графику зависимости lnJ от 1/Т при фиксированном напряжении. Расчёт ведётся по углу наклона.

Формула для расчётов

Альтернативный метод состоит в облучении перехода металл-полупроводник светом. Используются способы:

  1. Свет проходит через толщу полупроводника.
  2. Свет падает прямо на чувствительную площадку фотоэлемента.

Если энергия фотона укладывается в промежуток энергий между запрещённой зоной полупроводника и высотой барьера, наблюдается эмиссия электронов из металла. Когда параметр выше обоих указанных величин, выходной ток резко возрастает, что легко заметно на установке для эксперимента. Указанный метод позволяет установить, что работы выхода для одинакового полупроводника, с разными типами типами проводимости (n и p), в сумме дают ширину запрещённой зоны материала.

Новым методом для определения высоты барьера Шоттки служит измерение ёмкости перехода в зависимости от приложенного обратного напряжения. График показывает вид прямой, пересекающей ось абсцисс в точке, характеризующей искомую величину. Результат экспериментов сильно зависит от качества подготовки поверхности. Изучение технологических методов обработки показывает, что травление в плавиковой кислоте оставляет на образце из кремния слой оксидной плёнки толщиной 10 — 20 ангстрем.

Неизменно отмечается эффект старения. Меньше характерен для диодов Шоттки, образованных путём скола кристалла. Высоты барьеров отличаются для конкретного материала, в отдельных случаях сильно зависят от электроотрицательности металлов. Для арсенида галлия фактор почти не проявляется, в случае с сульфидом цинка играет решающую роль. Зато в последнем случае слабое действие оказывает качество подготовки поверхности, для GaAs это крайне важно. Сульфид кадмия находится в промежуточном положении относительно указанных материалов.

При исследовании оказалось, что большинство полупроводников ведёт себя подобно GaAs, включая кремний. Мид объяснил это тем, что на поверхности материала образуется ряд формаций, где энергия электронов лежит в области трети запрещённой зоны от зоны валентности. В результате при контакте с металлом уровень Ферми в последнем стремится занять схожее положение. История повторяется с любым проводником. Одновременно высота барьера становится разницей между уровнем Ферми и краем зоны проводимости в полупроводнике.

Сильное влияние электроотрицательности металла наблюдается в материалах с ярко выраженными ионными связями. Это прежде всего четырёхвалентный оксид кремния и сульфид цинка. Объясняется указанный факт отсутствием формаций, влияющих на уровень Ферми в металле. В заключение добавим, что исчерпывающей теории по поводу рассматриваемого вопроса сегодня не создано.

Преимущества диодов Шоттки

Не секрет, что диоды Шоттки служат выпрямителями на выходе импульсных блоков питания. Производители упирают на то, что потери мощности и нагрев в этом случае намного ниже. Установлено, что падение напряжения при прямом включении на диоде Шоттки меньше в 1,5 – 2 раза, нежели в любом типе выпрямителей. Попробуем объяснить причину.

Рассмотрим работу обычного p-n-перехода. При контакте материалов с двумя разными типами проводимости начинается диффузия основных носителей за границу контакта, где они уже не основные. В физике это называется запирающим слоем. Если на n-область подать положительный потенциал, основные носители электроны моментально притянутся в выводу. Тогда запирающий слой расширится, ток не течёт. При прямом включении основные носители, напротив, наступают на запирающий слой, где активно с ним рекомбинируют. Переход открывается, течёт ток.

Выходит, ни открыть, ни закрыть простой диод мгновенно не получится. Идут процессы образования и ликвидация запирающего слоя, требующие времени. Диод Шоттки ведёт себя чуть по-иному. Приложенное прямое напряжение открывает переход, но инжекции дырок в n-полупроводник практически не происходит, барьер для них велик, в металле таких носителей мало. При обратном включении в сильно легированных полупроводниках способен течь туннельный ток.

Читатели, ознакомленные с темой Светодиодное освещение, уже в курсе, что первоначально в 1907 году Генри Джозеф Раунд сделал открытие на кристаллическом детекторе. Это диод Шоттки в первом приближении: граница металла и карбида кремния. Разница в том, что сегодня используют полупроводник n-типа и алюминий.

Диод Шоттки умеет не только светиться: для этих целей используют p-n-переход. Контакт металл-полупроводник не всегда становится выпрямляющим. В последнем случае называется омическим и входит в состав большинства транзисторов, где его паразитные эффекты излишни и вредны. Каким будет переход, зависит от высоты барьера Шоттки. При больших значениях параметра, превышающих температурную энергию, появляются выпрямительные свойства. Свойства определяется разностью работы выхода металла (в вакууме) и полупроводника, либо электронным сродством.

Свойства перехода зависят от применяемых материалов и от геометрических размеров. Объёмный заряд в рассматриваемом случае меньше, нежели при контакте двух полупроводников разного типа, значит, время переключения значительно снижается. В типичном случае укладывается в диапазон от сотен пс до десятков нс. Для обычных диодов минимум на порядок выше. В теории это выглядит как отсутствие повышения уровня барьера при приложенном обратном напряжении. Легко объяснить и малое падение напряжения тем, что часть перехода составлена чистым проводником. Актуально для приборов, рассчитанных на сравнительно низкие напряжения в десятки вольт.

Сообразно свойствам диодов Шоттки они находят широкое применение в импульсных блоках питания для бытовой техники. Это позволяет снизить потери, улучшить тепловой режим работы выпрямителей. Малая площадь перехода обусловливает низкие напряжения пробоя, что слегка компенсируется увеличением площади металлизации на кристалле, охватывающей часть изолированной оксидом кремния области. Эта площадь, напоминающая конденсатор, при обратном включении диода обедняет прилегающие слои основными носителями заряда, значительно улучшая показатели.

Благодаря быстродействию диоды Шоттки активно применяются в интегральных схемах, нацеленных на использование высоких частот — рабочих и частот синхронизации.

Оцените статью