Как определить класс точности прибора формула

Класс точности определяет гарантированные границы, за пределы которых не выходит погрешность прибора в установлен­ном для него диапазоне измерений.

Класс точности КТ электромеханических стрелочных изме­рительных приборов нормируют в виде процентного отношения предела Хмакс (гарантированных границ) абсолютной погрешно­сти прибора, к нормирующему значению Хнорм его шкалы:

(2)

где нормирующим значением Хнорм для приборов с равномерной шкалой служит верхний предел измеряемой прибором величины, а для приборов с неравномерной шкалой – длина её рабочей части, т.е. длина участка между отметками шкалы, соответствующими диапазону измерений прибора.

Для электромеханических стрелочных измерительных прибо­ров установлены следующие цифры классов точности: 0,05; 0,1; 0,2; 0,5 (для лабораторных приборов) и 1;.1,5; 2,5; 4 (для технических приборов).

Цифра класса точности прибора указывается на его шкале. Для приборов с равномерной шкалой эта цифра указывается без каких-либо знаков (кружков, квадратов, звёздочек), например, 2,5. Для приборов с неравномерной шкалой цифра класса точно­сти подчеркивается ломаной линией, например, 2,5.

По формуле (2) класса точности прибора проводят оценку предельно допустимого значения его абсолютной погрешности. Такая оценка необходима для определения погрешности резуль­тата измерения, выполняемого прибором, а также для выбора прибора, обеспечивающего требуемую точность измерений.

Расчет предела абсолютной погрешности прибора с равно­мерной шкалой проводится непосредственно по формуле (2) кла­сса точности, а для приборов с неравномерной шкалой по фо­рмуле (2) сначала определяется погрешность прибора в едини­цах длины (мм) шкалы, а затем по ней и чувствительности при­бора рассчитывается абсолютная погрешность в единицах изме­ряемой величины.

Пример 1. Определить предел DIмакс абсолютной погреш­ности амперметра, который имеет равномерную шкалу, верхний предел измеряемого тока Iмакс = 5А и класс точности КТ =1.

Решение.1. Прибор имеет равномерную шкалу, следовате­льно, нормирующим значением в формуле (2) его класса точно­сти является верхний предел измеряемого тока 1макс = 5 А.

2. Предел абсолютной погрешности амперметра находится непосредственно из формулы (2):

.

Пример 2. Определить предел DRмакс абсолютной погре­шности омметра с неравномерной шкалой в трёх её точках (начале, середине и конце), если диапазон измерений прибора ле­жит в пределах от 3 до 300 кОм, длина рабочего участка шка­лы (т.е. между отметками 3 и 300) составляет Lp = 60мм, класс точности Кт=2,5, чувствительность прибора в начале, сере­дине к конце рабочего участка шкалы соответственно равна Sн = 10 мм/нОм , Sс =1 мм/ нОм к Sк = 0,1 мм/кОм.

Решение.1. Прибор имеет неравномерную шкалу, следова­тельно, нормирующим значением в формуле (2) его класса то­чности является длина рабочего участка Lp = 60 мм.

2. По формуле (2) класса точности омметра определяется предел DLмакс его абсолютной погрешности, выраженный в единицах длины шкалы:

мм

3. Предел DRмакс абсолютной погрешности омметра в единицах измеряемой величины (т.е.

кОм;

кОм;

кОм.

Пример 3. Определить пределы абсолютной DIмакс и относительной dмакс погрешностей результата измерения тока амперметром, у которого верхний предел измерения Iмакс = 5А, класс точности КТ =1, шкала равномерная. Показание амперме­тра при измерении равно Iизм = 3А.

Читайте также:  Чертежи финских ножей с размерами

Решение. 1. Предел DIмакс абсолютной погрешности резу­льтата измерения определяется пределом абсолютной погрешно­сти прибора, который находится по классу точности прибора:

.

2. Предел относительной погрешности результата измере­ния

%

Примечание. Как следует из примера, предел относите­льной погрешности результата измерения будет возрастать с уменьшением уровня измеряемой величины. Следовательно, относительная погрешность получаемых результатов измерения будет близка к наименьшему своему возможному значению, ра­вному цифре класса точности прибора, только в случае, если измеряемая величина близка к верхнему пределу измерения при­бора.

2.7.Выбор приборов для измерений

Основными метрологическими характеристиками прибора, определяющими погрешность результата измерения, являются верхний предел измерения и класс точности.

Верхний предел измерения прибора влияет, как видно из примера 3, на относительную погрешность получаемого результа­та измерения. Эта погрешность возрастает с уменьшением уровня измеряемой величины. Следовательно, приборы необходимо подби­рать таким образом, чтобы их верхний предел измерения был как можно ближе к уровню измеряемой величины. В этом случае отно­сительная погрешность получаемого результата измерения будет близка к наименьшему своему значению, равному цифре класса точности прибора.

Класс точности определяет способность прибора "улавли­вать" флуктуации измеряемой величины. К таким флуктуациям, например, относится технологический разброс параметров те­хнических изделий, т.е. неповторимость параметров отдельных изделий одного вида. (Этот разброс обусловлен несовершен­ством технологии изготовления изделий.)

Флуктуации измеряемой величины и погрешность отдельного прибора носят случайный характер и между собой не коррелированы (не взаимосвязаны).

(3)

Точность "улавливания" флуктуации DXф измеряемой ве­личины повышается с уменьшением погрешности п прибора. Однако, следует иметь в виду, что приборы с меньшей погреш­ностью имеют более высокую стоимость. Поэтому выбор приборов с меньшей погрешностью целесообразен до тех пор, пока умень­шение погрешности п оказывает существенное влияние на величину и. Отмеченное обстоятельство иллюстрируется гра­фиком (рис.3) зависимости (3), представленной в виде

,

где составляющие и и п выражены относительно флукту­ации DXф, которая является независимой величиной. Из гра­фика видно, что в зоне п/DXф = 0,3 ¸ 0,5 отношение и/DХф практически не изменяется. Следовательно, при вы­боре прибора по классу точности целесообразно использовать условие

Рис. 3 – Зависимость погрешности результата измерения

от погрешности прибора

Пример 4. Выбрать вольтметр, обеспечивавший удовлетвори­тельную точность результата измерения выходного напряжения Uвых = 20 В блока питания, которое из-за технологического разброса параметров составных элементов блока может изменя­ться на ±1 % от указанного значения.

Решение.1. Выбор вольтметра заключается в определении его верхнего предела измерения и класса точности.

2. Верхний предел измерения вольтметра выбирается, как было отмечено в разд. 2.7, наиболее близким к уровню изме­ряемой величины.

У стандартных электромеханических вольтметров наиболее близким к уровню измеряемого напряжения Uвых = 20 является верхний предел измерения Uv макс = 30 В.

Читайте также:  Самодельный ледобур для рыбалки

3. В рассматриваемом примере технологический разброс DUвых выходного напряжения блока питания составляет ±1 % от среднего значения 20 В:

В

4. Согласно указанному в разделе 2.7 правилу, предел Uv макс = 30 В абсолютной погрешности вольтметра должен удовле­творять условию

5. Класс точности КТ выбираемого вольтметра, опреде­ляется по формуле (2):

Среди стандартных электромеханических вольтметров ука­занному условию удовлетворяет прибор с классом точности 0,2.

6. Заключение: для измерения выходного, напряжения блока питания выбираем вольтметр с верхним пределом измерения Uv макс = 30В и классом точности КТ = 0,2.

Класс точности – основная метрологическая характеристика средства измерения (прибора, в частности).

Классы точности разных средств измерений (приборов) в общем случае могут быть заданы различными способами. Используются предельные значения основных абсолютных, относительных и приведенных погрешностей. Для правильной оценки инструментальной погрешности в каждом конкретном случае (при выборе одного из нескольких приборов) необходимо достаточно уверенно ориентироваться в различных способах задания классов точности.

Класс точности средства измерения говорит о максимально возможной (предельной) инструментальной составляющей общей погрешности результата измерения. Реально инструментальная погрешность у исправного и своевременно поверяемого прибора может принимать любое значение внутри заданных классом точности пределов.

Классы точности различных отечественных приборов могут задаваться изготовителями по-разному, но в соответствии со стандартами (в России – ГОСТ 8.401 – 80. Классы точности средств измерений. Общие требования). Чаще всего используются следующие четыре варианта задания классов точности, т.е. предельных значений погрешностей.

Графически зависимости значений абсолютных и относительных погрешностей от значения измеряемой величины Х можно представить так – см. рис.1 .

Типичным для аналоговых стрелочных и простых (не очень точных) цифровых приборов является задание класса точности предельным значением основной приведенной погрешности g . Это означает постоянство (независимость от значения измеряемой величины X ) предельной абсолютной погрешности D = const (см. рис.1.а. ), т.е. имеет место только аддитивная погрешность.

Для некоторых аналоговых приборов (в частности, самопишущих) применяется задание класса точности пределом основной относительной погрешности d = const (см. рис.1.б .). Это говорит о мультипликативном характере погрешности прибора.

Для отечественных цифровых приборов часто принято задание класса в виде предельного значения основной относительной погрешности, содержащей два слагаемых – аддитивную и мультипликативную составляющие (соответственно, d·Xk / X и c – d ) – см. рис. 1.в.

Иногда, особенно часто в случае с импортными приборами, класс точности цифровых приборов задается пределом основной абсолютной погрешности, также состоящей из двух частей – аддитивной ( b·FS ) и мультипликативной ( a·R ) – см. рис.1.г .

Существует разновидность задания коэффициентов a и b в процентах. Например, D = ± (0,2 % от отсчета + 0,2 % от диапазона измерения).

Значения коэффициентов a, b, c, d в этих выражениях выбираются изготовителем прибора обычно из ряда 1 – 1,5 – 2,0 – 2,5 – 4 – 5 – 6 с умножением на число 10 в различных степенях. Поскольку собственно формулы погрешностей одни и те же, то достаточно указывать лишь значения этих коэффициентов. Например, класс точности цифрового вольтметра может быть выражен просто дробью c/d = 0,5/0,2 (здесь коэффициенты c/d выражены в процентах). Для случая задания класса по пределу абсолютной погрешности, может быть просто задано отношение коэффициентов a/b = 0,001/0,001 (безразмерные единицы). Или, оно может быть задано в процентах от результата измерения и от диапазона измерения, например, 0,1%R /0,1%FS .

Читайте также:  Сплавы и их классификация 9 класс

Гиперболический характер поведения относительной погрешности d в зависимости от значения измеряемой величины X (см. рис.1.а., 1.в., 1.г. ) объясняет известные рекомендации работать в таких диапазонах измерения (или выбирать такой прибор), где значение X как можно ближе к верхнему пределу диапазона измерения Xk. Это обеспечивает меньшую относительную погрешность. Минимальное ее значение будет иметь место в точке X = Xk .

Зная класс точности, результат измерения, условия эксплуатации, можно оценить максимально возможную инструментальную составляющую погрешности результата. Предельная суммарная инструментальная погрешность складывается из предельной основной и предельной дополнительной погрешностей. Основная погрешность – это та, что имеет место в нормальных условиях эксплуатации. Дополнительной называется погрешность, вызванная изменением влияющих величин (например, температуры) за пределы нормальных значений.

Основная погрешность легко определяется по классу точности.

Дополнительная (температурная) погрешность определяется основной погрешностью и значением температуры окружающей среды в процессе эксперимента,. в котором используется измерительный прибор. Дополнительная погрешность может превосходить основную, но также легко может быть оценена. Например, дополнительная погрешность, вызванная выходом температуры за пределы нормальных значений (типично 20°С ± 5°C или, что характерно для многих приборов зарубежных фирм, 23°С ± 5°C ), обычно численно оценивается для аналоговых приборов как “основная на каждые десять градусов отличия от нормальной температуры”, а для цифровых – как “половина основной на каждые десять градусов отличия от нормальной температуры”. Например, если значение основной абсолютной погрешности (найденное по классу точности) для используемого отечественного цифрового мультиметра (в режиме вольтметра) равно Dо = ± 0,1 В, а температура окружающей среды во время эксперимента была +30°C , то дополнительная абсолютная предельная погрешность не превзойдет значения

Предельное значение суммарной инструментальной погрешности D при этом будет равно

Отметим, что данный расчет дает в общем случае завышенные значения погрешностей, т.е. такие, выше которых быть не должно, если приборы исправны и проверены.

Как определять класс точности датчиков, если в технической документации к приборам класс точности дается либо в буквенном выражении (А), либо в процентном (1%, 5%)?

Класс точности прибора (аппарата и пр.) определяется по ГОСТ 8.401-80.

Согласно п. 3.2.6. ГОСТ 8.40180. Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице.

Буква S в классе точности прибора говорит о том, что он нормируется в пределе 1%.

Оцените статью
Adblock detector