Как найти средний коэффициент жесткости пружины

Мы уже неоднократно пользовались динамометром – прибором для измерения сил. Познакомимся теперь с законом, позволяющим измерять силы динамометром и обуславливающим равномерность его шкалы.

Известно, что под действием сил возникает деформация тел – изменение их формы и/или размеров. Например, из пластилина или глины можно вылепить предмет, форма и размеры которого будут сохраняться и после того, когда мы уберём руки. Такую деформацию называют пластической. Однако, если наши руки деформируют пружину, то когда мы их уберём, возможны два варианта: пружина полностью восстановит форму и размеры или же пружина сохранит остаточную деформацию.

Если тело восстанавливает форму и/или размеры, которые были до деформации, то деформация упругая. Возникающая при этом в теле сила – это сила упругости, подчиняющаяся закону Гука:

F упр – модуль силы упругости тела, Н
| D l| – модуль удлинения тела, м
k – коэффициент жёсткости тела, Н/м

Поскольку удлинение тела входит в закон Гука по модулю, этот закон будет справедлив не только при растяжении, но и при сжатии тел.

Опыты показывают: если удлинение тела мало по сравнению с его длиной, то деформация всегда упругая; если удлинение тела велико по сравнению с его длиной, то деформация, как правило, будет пластической или даже разрушающей. Однако, некоторые тела, например, резинки и пружины деформируются упруго даже при значительных изменениях их длины. На рисунке показано более чем двухкратное удлинение пружины динамометра.

Для выяснения физического смысла коэффициента жёсткости, выразим его из формулы закона. Получим отношение модуля силы упругости к модулю удлинения тела. Вспомним: любое отношение показывает, сколько единиц величины числителя приходится на единицу величины знаменателя. Поэтому коэффициент жёсткости показывает силу, возникающую в упруго деформированном теле при изменении его длины на 1 м.

  1. Динамометр является .
  2. Благодаря закону Гука в динамометре наблюдается .
  3. Явлением деформации тел называют .
  4. Пластически деформированным мы назовём тело, .
  5. В зависимости от модуля и/или направления приложенной к пружине силы, .
  6. Деформацию называют упругой и считают подчиняющейся закону Гука, .
  7. Закон Гука носит скалярный характер, так как с его помощью можно определить только .
  8. Закон Гука справедлив не только при растяжении, но и при сжатии тел, .
  9. Наблюдения и опыты по деформации различных тел показывают, что .
  10. Ещё со времени детских игр мы хорошо знаем, что .
  11. По сравнению с нулевым штрихом шкалы, то есть недеформированным начальным состоянием, справа .
  12. Чтобы понять физический смысл коэффициента жёсткости, .
  13. В результате выражения величины «k» мы .
  14. Ещё из математики начальной школы мы знаем, что .
  15. Физический смысл коэффициента жёсткости состоит в том, что он .

Задача. К пружине, начальная длина которой 10 см, подвесили груз массой 1 кг. При этом пружина удлинилась до 15 см. Определите коэффициент жёсткости для данной пружины. С каким периодом подвешенный груз будет совершать вертикальные колебания на такой пружине?

Решение. Эта задача будет иметь решение, только если мы убедимся, что деформация пружины упруга. То есть при снятии груза пружина должна принять первоначальную длину, равную 10 см. Ответ на этот вопрос даст только опыт, то есть задача – отчасти экспериментальная.

Используя третий закон Ньютона в скалярной форме, а также закон Гука, подсчитаем коэффициент упругости пружины:

F тяж = F упр = k·| D l| = k · |l–l o | = k · ( l–l o )

Подставив жёсткость пружины 200 Н/м в формулу для периода колебаний пружинного маятника (см. § 11-б), вычислим период:

Ответ. Жёсткость пружины равна 200 Н/м, и 10 колебаний маятника будут совершены за 4 секунды, что можно проверить секундомером.

Пока мы вели речь только о твёрдых телах. Однако сила упругости возникает и в жидкостях, и в более сложных телах, например, воздушном шарике, состоящем из резиновой оболочки и воздуха. Можно ли к таким телам применять закон Гука (и если можно, то при насколько больших деформациях), нам даст ответ только эксперимент. Он же позволит вычислить коэффициенты жёсткости для этих тел.

  1. Какова длина недеформированной пружины?
  2. Чему равно удлинение пружины?
  3. В каком случае мы имеем право применить закон Гука?
  4. Проверить это можно следующим образом: .
  5. Коэффициент жёсткости по результатам вычислений равен .
  6. Проверить полученное значение мы можем путём измерения .
  7. При проверке нам нужно убедиться, что .
  8. Сила упругости возникает не только в .
  9. Закон Гука позволяет найти силу упругости .
  10. Важно: только предварительный эксперимент по изучению характера деформации позволит нам выяснить, .
  11. В случае упругой деформации тел, следующий эксперимент .
Читайте также:  Роторная дробилка для зерна

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Цель: экспериментальная проверка закона Гука, исследование упругих систем, образованных параллельным и последовательным соединением пружин.
Оборудование: набор пружин, штатив, набор грузов, линейка.

Груз, подвешенный на пружине, вызывает ее деформацию. Если пружина способна восстановить первоначальную форму, то ее деформация называется упругой.

При упругих деформациях выполняется закон Гука:

,

где Fупр ¾ сила упругости; k ¾ коэффициент упругости (жесткость); Dl – удлинение пружины.

Примечание: знак “-” определяет направление силы упругости.

Если груз находится в равновесии, то сила упругости численно равна силе тяжести: k Dl = m g, тогда можно найти коэффициент упругости пружины:

, (1)

где m ¾ масса груза; g ¾ ускорение свободного падения.

Рис.1 Рис. 2

При последовательном соединении пружин (см. рис.1) силы упругости, возникающие в пружинах, равны между собой, а общее удлинение системы пружин складывается из удлинений в каждой пружине.

Коэффициент жесткости такой системы определяется по формуле:

, (2)

где k1 — жесткость первой пружины; k2 — жесткость второй пружины.

При параллельном соединении пружин (см. рис. 2) удлинение пружин одинаково, а результирующая сила упругости равна сумме сил упругости в отдельных пружинах.

Коэффициент жесткости при параллельном соединении пружин находится по формуле:

Порядок выполнения работы

Задание 1. Определение коэффициентов упругости двух пружин

1. Прикрепить пружину к штативу. Подвешивая к каждой пружине грузы в порядке возрастания их массы, измерять удлинение пружины Dl.

2. По формуле F = mg рассчитать силу упругости.

3. Построить графики зависимости силы упругости от величины удлинения пружины. По виду графиков определить выполняется ли закон Гука.

4. По формуле (1) рассчитать коэффициент упругости пружины. Найти среднее арифметическое значение kср.

5. Найти абсолютную погрешность каждого измерения

6. Найти среднее арифметическое значение абсолютной погрешности D kср.

7. Результаты измерений и расчетов занести в таблицу.

Задание 2. Экспериментальное определение коэффициентов упругости двух пружин, соединенных последовательно, соединенных параллельно.

1. Провести измерения (как описано в задании 1) и рассчитать коэффициенты упругости последовательно и параллельно соединенных пружин.

2. Найти среднее значение коэффициентов и погрешности их измерений. Результаты измерений и вычислений занести в таблицу.

3. По формулам (2) и (3) рассчитать теоретические значения коэффициентов упругости при последовательном и параллельном соединении пружин.

4. Найти погрешность эксперимента, сравнив теоретические значения коэффициента упругости с экспериментальными по формуле:

.

m, кг
F, Н
Первая пружина
Dl1, м
k1, Н/м kср =
D k1, Н/м D kср =
Вторая пружина
Dl2, м
k2, Н/м kср =
D k2, Н/м D kср =
Последовательное соединение пружин
Dl, м
k, Н/м kср =
D k, Н/м D kср =
Параллельное соединение пружин
Dl, м
k, Н/м kср =
D k, Н/м D kср =

Сформулируйте закон Гука.

Дайте определение деформации, коэффициента упругости. Назовите единицы измерения этих величин в СИ.

Как находится коэффициент упругости для параллельного и последовательного соединения пружин?

Лабораторная работа № 1-5

Изучение законов динамики

Поступательного движения

Цель работы: Теоретическое и экспериментальное изучение законов динамики поступательного движения. Определение зависимости ускорения материальной точки от ее массы и действующей внешней силы.
Оборудование: Экспериментальная установка (машина Атвуда), электронный секундомер, набор грузов разной массы.

Теоретические сведения

Динамика изучает причины, вызывающие механическое движение.

Инерция — способность тела сохранять состояние покоя или прямолинейного равномерного движения, если на это тело не действуют другие тела.

Масса m (кг) — количественная мера инертности тела.

Первый закон Ньютона:

Существуют такие системы отсчета, в которых тело находится в состоянии покоя или прямолинейного равномерного движения, если на него не действуют другие тела.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Сила (Н) — векторная величина, характеризующая взаимодействие между телами или частями тела.

Принцип суперпозиции сил:

Если на материальную точку действуют одновременно силы и , то их можно заменить равнодействующей силой :

Импульс тела (кг∙м/с) — векторная величина, равная произведению массы m материальной точки на его скорость :

,

Второй закон Ньютона:

где — равнодействующая сила, действующая на материальную точку.

Замечание. Если масса тела постоянна, то второй закон Ньютона принимает вид:

,

где — ускорение, приобретаемое телом массой m под действием силы .

Сила тяжести — сила, действующая на тело вследствие его притяжения к Земле или другим небесным телам.

Вблизи поверхности Земли тело массой m под действием силы тяжести движется с ускорением свободного падения . Поэтому по второму закону Ньютона сила тяжести равна:

Читайте также:  Кабель телефонный тппэп 100х2х0 5

.

Последнее изменение этой страницы: 2016-04-18; Нарушение авторского права страницы

Пружины можно назвать одной из наиболее распространенных деталей, которые являются частью простых и сложных механизмов. При ее изготовлении применяется специальная проволока, накручиваемая по определенной траектории. Выделяют довольно большое количество различных параметров, характеризующих это изделие. Наиболее важным можно назвать коэффициент жесткости. Он определяет основные свойства детали, может рассчитываться и применяться в других расчетах. Рассмотрим особенности подобного параметра подробнее.

Определение и формула жесткости пружины

При рассмотрении того, что такое коэффициент жесткости пружины следует уделить внимание понятию упругости. Для ее обозначения применяется символ F. При этом сила упругости пружины характеризуется следующими особенностями:

  1. Проявляется исключительно при деформации тела и исчезает в случае, если деформация пропадает.
  2. При рассмотрении, что такое жесткость пружины следует учитывать, после снятия внешней нагрузки тело может восстанавливать свои размеры и форму, частично или полностью. В подобном случае деформация считается упругой.

Не стоит забывать о том, что жесткость – характеристика, свойственная упругим телам, способным деформироваться. Довольно распространенным вопросом можно назвать то, как обозначается жесткость пружины на чертежах или в технической документации. Чаще всего для этого применяется буква k.

Слишком сильная деформация тела становится причиной появления различных дефектов. Ключевыми особенностями можно назвать следующее:

  1. Деталь может сохранять свои геометрические параметры при длительной эксплуатации.
  2. При увеличении показателя существенно снижается сжатие пружины под воздействие одинаковой силы.
  3. Наиболее важным параметром можно назвать коэффициент жесткости. Он зависит от геометрических показателей изделия, типа применяемого материала при изготовлении.

Довольно большое распространение получили красные пружины и другого типа. Цветовое обозначение применяется в случае производства автомобильных изделий. Для расчета применяется следующая формула: k=Gd 4 /8D 3 n. В этой формуле указываются нижеприведенные обозначения:

  1. G – применяется для определения модуля сдвига. Стоит учитывать, что это свойство во многом зависит от применяемого материала при изготовлении витков.
  2. d – диаметральный показатель проволоки. Она производится путем проката. Этот параметр указывается также в технической документации.
  3. D – диаметр создаваемых витков при накручивании проволоки вокруг оси. Он подбирается в зависимости от поставленных задач. Во многом диаметр определяет то, какая нагрузка оказывается для сжатия устройства.
  4. n – число витков. Этот показатель может варьировать в достаточно большом диапазоне, также влияет на основные эксплуатационные характеристики изделия.

Рассматриваемая формула применяется в случае расчета коэффициента жесткости для цилиндрических пружин, которые устанавливаются в самых различных механизмах. Подобная единица измеряется в Ньютонах. Коэффициент жесткости для стандартизированных изделий можно встретить в технической литературе.

Формула жесткости соединений пружин

Не стоит забывать о том, что в некоторых случаях проводится соединение тела нескольким пружинами. Подобные системы получили весьма широкое распространение. Определить жесткость в этом случае намного сложнее. Среди особенностей соединения можно отметить нижеприведенные моменты:

  1. Параллельное соединение характеризуется тем, что детали размещаются последовательно. Подобный метод позволяет существенно повысить упругость создаваемой системы.
  2. Последовательный метод характеризуется тем, что деталь подключаются друг к другу. Подобный способ подсоединения существенно снижает степень упругости, однако позволяет существенно увеличить максимальное удлинение. В некоторых случаях требуется именно максимальное удлинение.

В обеих случаях применяется определенная формула, которая определяет особенности подключения. Модуль силы упругости может существенно отличаться в зависимости от особенностей конкретного изделия.

При последовательном соединении изделий показатель рассчитывается следующим образом: 1/k=1/k1+1/k2+…+1/kn. Рассматриваемый показатель считается довольно важным свойством, в данном случае он снижается. Параллельный метод подключения рассчитывается следующим образом: k=k1+k2+…kn.

Подобные формулы могут использоваться при самых различных расчетах, чаще всего на момент решения математических задач.

Коэффициент жесткости соединений пружин

Приведенный выше показатель коэффициента жесткости детали при параллельном или последовательном соединении определяет многие характеристики соединения. Довольно часто проводится определение тому, чему равно удлинение пружины. Среди особенностей параллельного или последовательного соединения можно отметить нижеприведенные моменты:

  1. При параллельном подключении удлинение обоих изделий будет равным. Не стоит забывать о том, что оба варианта должны характеризоваться одинаковой длиной в свободном положении. При последовательном показатель увеличивается в два раза.
  2. Свободное положение – ситуация, в которой деталь находится без прикладывания нагрузки. Именно оно в большинстве случаев учитывается при проведении расчетов.
  3. Коэффициент жесткости изменяется в зависимости от применяемого способа подсоединения. В случае параллельного соединения показатель увеличивается в два раза, при последовательном уменьшается.

Для проведения расчетов нужно построить схему подключения всех элементов. Основание представлено линией со штриховкой, изделие обозначается схематически, а тело в упрощенном виде. Кроме этого, от упругой деформации во многом зависит кинетическая и другая энергия.

Читайте также:  Углошлифовальная машина с регулировкой оборотов

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Единицы измерения

При проводимых расчетах также должно учитываться то, в каких единицах измерениях проводятся вычисления. При рассмотрении того, чему равно удлинение пружины уделяется внимание единице измерения в Ньютонах.

Для того чтобы упростить выбор детали многие производители указывают его цветовым обозначением.

Разделение пружины по цветам проводится в сфере автомобилестроения.

Среди особенностей подобной маркировки отметим следующее:

  1. Класс А обозначается белым, желтым, оранжевым и коричневым оттенками.
  2. Класса В представлен синим, голубым, черным и желтым цветом.

Как правило, подобное свойство отмечается на внешней стороне витка. Производители наносят небольшую полоску, которая и существенно упрощает процесс выбора.

Особенности расчета жесткости соединений пружин

Приведенная выше информация указывает на то, что коэффициент жесткости является довольно важным параметром, который должен рассчитываться при выборе наиболее подходящего изделия и во многих других случаях. Именно поэтому довольно распространенным вопросом можно назвать то, как найти жесткость пружины. Среди особенностей соединения отметим следующее:

  1. Провести определение растяжения пружины можно при вычислении, а также на момент теста. Этот показатель может зависеть в зависимости от проволоки и других параметров.
  2. Для расчетов могут применяться самые различные формулы, при этом получаемый результат будет практически без погрешностей.
  3. Есть возможность провести тесты, в ходе которых и выявляются основные параметры. Определить это можно исключительно при применении специального оборудования.

Как ранее было отмечено, выделяют последовательный и параллельный метод соединения. Оба характеризуются своими определенными особенностями, которые должны учитываться.

В заключение отметим, что рассматриваемая деталь является важной частью конструкции различных механизмов. Неправильный вариант исполнения не сможет прослужить в течение длительного периода. При этом не стоит забывать о том, что слишком сильная деформация становится причиной ухудшения эксплуатационных характеристик.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.