Электрофизические и электрохимические методы обработки материалов видео

Электрофиз и ческие и электрохим и ческие м е тоды обраб о тки, общее название методов обработки конструкционных материалов непосредственно электрическим током, электролизом и их сочетанием с механическим воздействием. В Э. и э. м. о. включают также методы ультразвуковые, плазменные и ряд других методов. С разработкой и внедрением в производство этих методов сделан принципиально новый шаг в технологии обработки материалов — электрическая энергия из вспомогательного средства при механической обработке (осуществление движения заготовки, инструмента) стала рабочим агентом. Всё более широкое использование Э. и э. м. о. в промышленности обусловлено их высокой производительностью, возможностью выполнять технологические операции, недоступные механическим методам обработки. Э. и э. м. о. весьма разнообразны и условно их можно разделить на электрофизические (электроэрозионные, электромеханические, лучевые), электрохимические и комбинированные (рис. 1).

Электрофизические методы обработки

Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Т. к. длительность используемых в данном методе обработки электрических импульсов не превышает 10 —2 сек, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Т. о., при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого (рис. 2). Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Электроискровая обработка была предложена советскими учёными H. И. и Б. Р. Лазаренко в 1943. Она основана на использовании искрового разряда. При этом в канале разряда температура достигает 10000 °С, развиваются значительные гидродинамические силы, но сами импульсы относительно короткие и, следовательно, содержат мало энергии, поэтому воздействие каждого импульса на поверхность материала невелико. Метод позволяет получить хорошую поверхность, но не обладает достаточной производительностью. Кроме того, при этом методе износ инструмента относительно велик (достигает 100% от объёма снятого материала). Метод используется в основном при прецизионной обработке небольших деталей, мелких отверстий, вырезке контуров. твердосплавных штампов проволочным электродом (см. ниже).

Электроимпульсная обработка основана на использовании импульсов дугового разряда. Предложена советским специалистом М. М. Писаревским в 1948. Этот метод стал внедряться в промышленность в начале 1950-х гг. В отличие от искрового, дуговой разряд имеет температуру плазмы ниже (4000—5000°С), что позволяет увеличивать длительность импульсов, уменьшать промежутки между ними и т. о. вводить в зону обработки значительные мощности (несколько десятков квт), т. е. увеличивать производительность обработки. Характерное для дугового разряда преимущественно разрушение катода приводит к тому, что износ инструмента (в этом случае он подключается к аноду) ниже, чем при электроискровой обработке, составляя 0,05—0,3% от объёма снятого материала (иногда инструмент вообще не изнашивается). Более экономичный электроимпульсный метод используется в основном для черновой обработки и для трёхкоординатной обработки фасонных поверхностей. Оба метода (электроискровой и электроимпульсный) дополняют друг друга.

Электроэрозионные методы особенно эффективны при обработке твёрдых материалов и сложных фасонных изделий. При обработке твёрдых материалов механическими способами большое значение приобретает износ инструмента. Преимущество электроэрозионных методов (как и вообще всех Э. и э. м. о.) состоит в том, что для изготовления инструмента используются более дешёвые, легко обрабатываемые материалы. Часто при этом износ инструментов незначителен. Например, при изготовлении некоторых типов штампов механическими способами более 50% технологической стоимости обработки составляет стоимость используемого инструмента. При обработке этих же штампов электроэрозионными методами стоимость инструмента не превышает 3,5%. Условно технологические. приёмы электроэрозионной обработки можно разделить на прошивание и копирование. Прошиванием удаётся получать отверстия диаметром менее 0,3 мм, что невозможно сделать механическими методами. В этом случае инструментом служит тонкая проволочка. Этот приём на 20—70% сократил затраты на изготовление отверстий в фильерах, в том числе алмазных. Более того, электроэрозионные методы позволяют изготовлять спиральные отверстия. При копировании получила распространение обработка ленточным электродом (рис. 3). Лента, перематываясь с катушки на катушку, огибает копир, повторяющий форму зуба. На грубых режимах лента «прорезает» заготовку на требуемую глубину, после чего вращением заготовки щель расширяется на нужную ширину. Более распространена обработка проволочным электродом (лента заменяется проволокой). Этим способом, например, можно получать из единого куска материала одновременно пуансон и матрицу штампа, причём их соответствие практически идеально. Возможности электроэрозионной обработки при изготовлении деталей сложной формы видны из рис. 4а, б. Другие её разновидности: размерная обработка, упрочнение инструмента, получение порошков для порошковой металлургии и др. См. также Вихрекопировальная обработка.

Первый в мире советский электроэрозионный (электроискровой) станок был предназначен для удаления застрявшего в детали сломанного инструмента (1943). С тех пор в СССР и за рубежом выпущено большое число разнообразных по назначению, производительности и конструкции электроэрозионных станков. По назначению (как и металлорежущие станки) различают станки универсальные, специализированные (см., напр., рис. 5) и специальные, по требуемой точности обработки — общего назначения, повышенной точности, прецизионные. Общими для всех электроэрозионных станков узлами являются устройство для крепления и перемещения инструмента (заготовки), гидросистема, устройство для автоматического регулирования межэлектродного промежутка (между заготовкой и инструментом). Генераторы соответствующих импульсов (искровых или дуговых) изготовляются, как правило, отдельно и могут работать с различными станками. Основные отличия устройств для перемещения инструмента (заготовки) в электроэрозионных станках от таковых в металлорежущих станках — отсутствие значительных силовых нагрузок и наличие электрической изоляции между электродами. Гидросистема состоит из ванны с рабочей жидкостью (технического масла, керосин и т. п.), гидронасоса для прокачивания жидкости через межэлектродный промежуток и фильтров для очистки жидкости, поступающей в насос, от продуктов эрозии.

Электроимпульсный станок отличается от электроискрового практически только генератором импульсов. Советская промышленность выпускает генераторы различного назначения. Развитие техники полупроводниковых приборов позволило создать генераторы, обеспечивающие изменение параметров импульсов в широких пределах. Например, у советского генератора ШГИ-125-100 диапазон частот следования импульсов 0,1—100 кгц, длительность импульсов 3—9000 мксек, максимальная мощность 7,5 квт, номинальная сила тока 125 а. Диапазон рабочих напряжении, вырабатываемых для электроискровой обработки, — 60—200 в, а для электроимпульсной — 20—60 в. Современные электроэрозионные станки — высокоавтоматизированные установки, зачастую работающие в полуавтоматическом режиме.

Электромеханическая обработка объединяет методы, совмещающие одновременное механическое и электрическое воздействие на обрабатываемый материал в зоне обработки. К ним же относят методы, основанные на использовании некоторых физических явлений (например, гидравлический удар, ультразвук и др.).

Электроконтактная обработка основана на введении в зону механической обработки электрической энергии — возбуждении мощной дуги переменного или постоянного тока (до 12 ка при напряжении до 50 в) между, например, диском, служащим для удаления материала из зоны обработки, и изделием (рис. 6). Применяется для обдирки литья, резки и других видов обработки, аналогичных по кинематике движений почти всем видам механической обработки. Преимущества метода — высокая производительность (до 10 6 мм 3 /мин) на грубых режимах, простота инструмента, работа при относительно небольших напряжениях, низкие удельные давления инструмента — 30—50 кн/м 2 (0,3— 0,5 кгс/см 2 ) и, как следствие, возможность использования для обработки твёрдых материалов инструмента, изготовленного из относительно мягких материалов. Недостатки — большая шероховатость обработанной поверхности, тепловые воздействия на металл при жёстких режимах.

Разновидностью электроконтактной обработки является электроабразивная обработка — обработка абразивным инструментом (в т. ч. алмазно-абразивным), изготовленным на основе проводящих материалов. Введение в зону обработки электрической энергии значительно сокращает износ инструмента.

Электроконтактные станки по кинематике не отличаются практически от соответствующих металлорежущих станков; имеют мощный источник тока.

Магнитоимпульсная обработка применяется для пластического деформирования металлов и сплавов (обжатие и раздача труб, формовка трубчатых и листовых заготовок, калибровка и т. п.) и основана на непосредственном преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого, например, при разряде батареи мощных конденсаторов на индуктор, в механическую работу при взаимодействии с проводником (заготовкой) (рис. 7). Преимущества метода — отсутствие движущихся и трущихся частей в установках, высокая надёжность и производительность, лёгкость управления и компактность, наличие лишь одного инструмента — матрицы или пуансона (роль другого выполняет поле) и др.: недостатки — относительно невысокий кпд, затруднительность обработки заготовок с отверстиями или пазами (мешающими протеканию тока) и большой толщины.

Читайте также:  Лучшие газовые колонки для квартиры отзывы

Электрогидравлическая обработка (главным образом штамповка). Основана на использовании энергии гидравлического удара при мощном электрическом (искровом) разряде в жидком диэлектрике (рис. 8). При этом необходимо вакуумирование полости между заготовкой и матрицей, поскольку из-за огромных скоростей движения заготовки к матрице воздух не успевает уйти из полости и препятствует плотному прилеганию заготовки к матрице. Метод прост, надёжен, но обладает небольшим кпд, требует высоких электрических напряжений и не всегда даёт воспроизводимые результаты.

К электромеханической обработке относится также ультразвуковая обработка.

Лучевая обработка. К лучевым методам обработки относится обработка материалов электронным пучком и световыми лучами (см. Лазерная технология). Электроннолучевая обработка осуществляется потоком электронов высоких энергий (до 100 кэв). Таким путём можно обрабатывать все известные материалы (современная электронная оптика позволяет концентрировать электронный пучок на весьма малой площади, создавать в зоне обработки огромные плотности мощности). Электроннолучевые станки могут выполнять резание (в т. ч. прошивание отверстий) и сварку с большой точностью (до 50 Электрофизические и электрохимические методы обработки материалов видео). Основой электроннолучевого станка является электронная пушка. Станки имеют также устройства контроля режима обработки, перемещения заготовки, вакуумное оборудование. Из-за относительно высокой стоимости, малой производительности, технической сложности станки используются в основном для выполнения прецизионных работ в микроэлектронике, изготовления фильер с отверстиями малых (до 5 мкм) диаметров, работ с особо чистыми материалами.

К электрофизическим методам обработки относится также плазменная обработка.

Электрохимические методы обработки

Основаны на законах электрохимии. По используемым принципам эти методы разделяют на анодные и катодные (см. Электролиз), по технологическим возможностям — на поверхностные и размерные.

Поверхностная электрохимическая обработка. Практическое использование электрохимических методов началось с 30-х гг. 19 в. (гальваностегия и гальванопластика, см. Гальванотехника). Первый патент на электролитическое полирование был выдан в 1910 Е. И. Шпитальскому. Суть метода состоит в том, что под действием электрического тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механического полирования, где снимаются только наиболее выступающие части. Электролитическое полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механического полирования — отсутствие каких-либо изменений в структуре обрабатываемого материала. См. статьи Анодирование, Пассивирование.

Размерная электрохимическая обработка. К этим методам обработки относят анодно-гидравлическую и анодно-механическую обработку.

Анодно-гидравлическая обработка впервые была применена в Советском Союзе в конце 20-х гг. для извлечения из заготовки остатков застрявшего сломанного инструмента. Скорость анодного растворения зависит от расстояния между электродами: чем оно меньше, тем интенсивнее происходит растворение. Поэтому при сближении электродов поверхность анода (заготовка) будет в точности повторять поверхность катода (инструмента). Однако процессу растворения мешают продукты электролиза, скапливающиеся в зоне обработки, и истощение электролита. Удаление продуктов растворения и обновление электролита осуществляются либо механическим способом (анодно-механическая обработка), либо прокачиванием электролита через зону обработки (рис. 9).

Этим методом, подбирая электролит, можно обрабатывать практически любые токопроводящие материалы, обеспечивая высокую производительность в сочетании с высоким качеством поверхности. Используемые для анодно-гидравлической обработки электрохимические станки просты в обращении, используют низковольтное (до 24 в) электрооборудование. Однако значительные плотности тока (до 200 а/см 2 ) требуют мощных источников тока, больших расходов электролита (иногда до 1 /3 площади цехов занимают баки для электролита).

Комбинированные методы обработки сочетают в себе преимущества электрофизических и электрохимических методов. Используемые сочетания разнообразны. Например, сочетание анодно-механической обработки с ультразвуковой в некоторых случаях повышает производительность в 20 раз. Существующие электроэрозионно-ультразвуковые станки позволяют использовать оба метода как раздельно, так и вместе.

Лит.: Вишницкий А. Л., Ясногородский И. 3., Григорчук И. П., Электрохимическая н электромеханическая обработка металлов, Л., 1971; Электрофизические и электрохимические методы размерной обработки материалов, М., 1971; Черепанов Ю. П., Самецкий Б. И., Электрохимическая обработка в машиностроении, М., 1972; Новое в электрофизической и электрохимической обработке материалов, Л., 1972.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 5. Электроэрозионный станок для извлечения обломков свёрл из глубоких отверстий в коленчатых валах.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 2. Схема электроэрозионного метода обработки: 1 — инструмент; 2 — заготовка; 3 — жидкий диэлектрик; 4 — электрические разряды.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 7. Схема магнитоимпульсной обработки: 1 — индуктор; 2 — заготовка. Пунктиром показаны магнитные силовые линии; жирными стрелками — механические силы.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 3. Схема обработки пазов ленточным электродом: 1 — лента; 2 — катушки; 3 — копир; 4 — заготовка.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 9. Схема анодно-гидравлической обработки поверхности турбинной лопатки подвижными электродами: 1 — лопатка; 2 — электроды; 3 — электролит. Стрелками показано направление движения электродов и электролита.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 8. Схема устройства для электрогидравлической штамповки: 1 — электроды; 2 — заготовка; 3 — вакуумная полость матрицы; 4 — матрица; 5 — рабочая жидкость.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 4б. Рабочее колесо газовой турбины, обработанное электроэрозионным методом.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 6. Принципиальная схема электроконтактной обработки: 1 — заготовка; 2 — диск; 3 — источник питания.

Электрофизические и электрохимические методы обработки материалов видео

Рис 4. Половина ковочного штампа.

Электрофизические и электрохимические методы обработки материалов видео

Рис. 1. Классификация основных электрофизических и электрохимических методов обработки.

Электрофизические и электрохимические методы обработки успешно дополняют механическую обработку резанием. Они применяются при обработке очень прочных и очень вязких материалов; хрупких, тонкостенных нежестких деталей, а также пазов, отверстий, имеющих размеры в несколько микрон; при получении поверхностей деталей с малой шероховатостью, с очень малой толщиной дефектного поверхностного слоя и т.д.

При электрофизических и электрохимических методах обработки механические нагрузки либо отсутствуют, либо настолько малы, что практически не влияют на погрешность точности обработки. Эти методы позволяют не только изменять форму обрабатываемой поверхности заготовки, но и влиять на состояние поверхностного слоя. При этом износостойкость и коррозионная стойкость поверхностного слоя повышаются, увеличиваются прочность и другие эксплуатационные характеристики поверхности детали. Технология электрофизических и электрохимических методов обработки проста, что обеспечивает широкие возможности их автоматизации.

Элионная обработка — это размерная обработка конструкционных материалов, основанная на использовании сфокусированных лучей или потоков частиц. Она применяется в тех случаях, когда обработка заготовок традиционными методами резания затруднена или невозможна.

К методам элионной обработки относятся: лазерная, электронно-лучевая, плазменная, электроэрозионная.

Лазерная обработка основана на использовании мощного светового луча, сфокусированного в тонкий пучок с большой концентрацией энергии. Луч выделяет теплоту на поверхности обрабатываемой заготовки, материал заготовки плавится и испаряется. Источником лазерного луча является оптический квантовый генератор (ОКГ), работа которого основана на принципе стимулированного генерирования светового излучения. Рабочим элементом ОКГ является рубиновый стержень, состоящий из окиси алюминия, активированного 0,05 % Сr. Источником света для возбуждения атомов хрома служит импульсная лампа с температурой излучения около 4000 °С. Свет лампы с помощью отражателя фокусируется на рубиновый стержень, в результате чего атомы хрома приходят, в возбужденное состояние. Из этого состояния они могут возвратиться в нормальное, излучая фотоны. Вся запасенная в стержне рубина энергия высвобождается почти одновременно в миллионные доли секунды в виде луча диаметром около 0,01 мм. Системой оптических линз луч фокусируется на поверхность обрабатываемой заготовки. Температура луча — около 6000…8000 °С.

При обработке лазером обеспечивается съем металла со скоростью до 100 мм 3 /с. Эффективность процесса обработки не зависит от свойств обрабатываемого материала. Этим методом можно обрабатывать, например, отверстия диаметром от 10 до 0,5 мкм и глубиной до 0,5 мм в нержавеющей стали, вольфраме, алмазе и других труднообрабатываемых материалах. Лазерную обработку применяют для разрезания заготовок на части, вырезания заготовок из листового материала, прорезания пазов и т.д.

Электронно-лучевая обработка основана на использовании энергии сфокуси-рованного электронного луча, получаемого в электронной пушке. Электронный луч образуется в результате эмиссии электронов с вольфрамового катода, установленного в вакуумной камере и питаемого от источника накала. Электроны формируются в пучок и под действием электрического поля, создаваемого высокой разностью потенциалов между катодом и анодом, ускоряются в вертикальном направлении. Затем луч, пройдя через специальную фокусирующую систему, направляется к поверхности заготовки. Диаметр сфокусированного луча составляет несколько микрон. В зоне обработки температура достигает 6000 °С.

Читайте также:  Максимальная потенциальная энергия пружинного маятника

Достоинства электронно-лучевой обработки следующие:

• возможность создания локальной концентрации высокой энергии (металл нагревается и испаряется только под лучом);

• широкое регулирование и управление тепловыми процессами;

• обработка труднодоступных мест заготовок.

Электронным лучом обрабатывают отверстия диаметром от 10 мкм до 1 мм, разрезают заготовки, прорезают пазы, обрабатывают труднообрабатываемые металлы и сплавы. Недостатком этого вида обработки является то, что она возможна только в вакууме.

Сущность плазменной размерной обработки состоит в том, что плазму направляют на обрабатываемую поверхность заготовки. Плазма представляет собой полностью ионизированный газ, имеющий температуру 10000…30 000 °С. Получают плазму в плазмотронах (плазменных головках) следующим образом: между вольфрамовым электродом и медным электродом, выполненным в виде трубы, возбуждают электрическую дугу; затем в трубу подают газ (аргон, азот, гелий, водород, кислород) или смесь газов (воздух). Проходя по соплу, газ обжимает электрический разряд, ионизируется и выходит из головки в виде ярко светящейся струи — плазмы.

Плазменным методом производят строгание и точение заготовок, прошивают отверстия, отрезают часть заготовки. Обрабатывать можно любые материалы.

Достоинства плазменной обработки: малая трудоемкость процесса, низкие расходы исходных материалов и полное использование сырья.

Недостатки – сильный шум (120 дБ и более), низкое качество и точность обработки.

Электроэрозионные методы обработки основаны на разрушении электродов из токопроводимых материалов при пропускании между ними импульсного электрического тока. К электроэрозионным методам обработки относятся электроискровая и электроимпульсная. Впервые эти методы были предложены русскими учеными в 1943 г.

При электроэрозионных методах обрабатываемая заготовка служит одним из электродов (анодом), а инструмент — другим электродом (катодом). Электрический разряд между двумя электродами происходит в газовой среде при заполнении межэлектродного промежутка диэлектрической жидкостью (керосином, минеральным маслом и др.). В жидкой среде процесс электроэрозии происходит интенсивнее. При наличии определенного значения разности потенциалов на электродах межэлектродное пространство ионизируется и становится токопроводящим.

Удаленный металл застывает в виде сферических гранул диаметром 0,01…0,005 мм в диэлектрической жидкости. Следующий импульс пробивает межэлектродный промежуток там, где расстояние между электродами окажется наименьшим. При непрерывном подведении к электродам импульсного тока процесс эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, при котором возможен электрический пробой при заданном напряжении импульса. Для продолжения процесса эрозии необходимо сблизить электроды до указанного расстояния. Для автоматического сближения электродов применяют следящие сис-темы.

Электроэрозионные методы обработки широко применяют при изготовлении штампов, пресс-форм, фильер, режущего инструмента, сеток и др. Ими можно получать сквозные и глухие отверстия любой формы, выполнять плоское, круглое и внутреннее шлифование, разрезать заготовки и т.д. При электроимпульсной обработке съем металла в единицу времени в 8 — 10 раз больше, чем при электроискровой. Точность размеров деталей и шероховатость поверхности зависят от режима обработки.

В основе электрохимических методов обработки лежит явление анодного растворения при электролизе. Обрабатываемая заготовка помещается в электролит, включается в цепь постоянного тока и служит анодом. При прохождении электрического тока через электролит протекают химические реакции, превращающие поверхностный слой металла в химическое соединение. Продукты электролиза переходят в раствор. Производительность электрохимической обработки зависит от свойств обрабатываемого металла, электролита и плотности тока.

При электрохимической размерной обработке инструменту, служащему катодом, придается форма, обратная форме обрабатываемой поверхности. Через межэлектродный промежуток, образуемый обрабатываемой заготовкой-анодом и инструментом-катодом, непрерывно под давлением подается струя электролита, которая растворяет образующиеся на заготовке продукты анодного растворения и удаляет их из зоны обработки. При этом одновременно обрабатывается поверхность заготовки, находящаяся под воздействием катода, что обеспечивает высокую производительность процесса. Участки заготовки, не требующие обработки, изолируются.

Достоинством данного метода является возможность обрабатывать тонкостенные детали из высокопрочных сплавов и других труднообрабатываемых материалов. Электрохимическая обработка применяется при отделочных операциях (электроалмазная обработка); при этом достигается высокое качество обработанной поверхности.

Анодно-механическая обработка основана на сочетании электротермических и электрохимических процессов и занимает промежуточное место между электроэрозионными и электрохимическими методами.

Суть метода состоит в том, что заготовку подключают к аноду, а инструмент — к катоду. В качестве инструмента в зависимости от характера обработки применяют металлические диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита (водный раствор жидкого натриевого стекла). Заготовке и инструменту сообщают движение так же, как и при обычных методах механической обработки резанием (скорость резания и подачу), а в зону обработки через сопло подают электролит. При пропускании через электролит постоянного электрического тока происходит процесс анодного растворения. При соприкосновении инструмента (катода) с микронеровностями обрабатываемой поверхности заготовки (анода) происходит процесс электроэрозии. Под действием проходящего через заготовку электрического тока металл последней размягчается. Продукты электроэрозии и анодного растворения удаляются из зоны обработки в результате относительных движений инструмента и заготовки.

Анодно-механическим методом обрабатывают все токопроводящие материалы, высокопрочные и труднообрабатывае­мые металлы и сплавы, твердые сплавы, вязкие материалы.

Сущность химических методов размерной обработки деталей состоит в травлении их в крепких растворах кислот и щелочей. Перед травлением заготовки предвари­тельно тщательно очищают от окалины и масла. Поверхности заготовок, не подлежащие обработке, покрывают химически стойкими защитными покрытиями (лаками, красками, эмуль­сиями, применяют гальванические покрытия, резиновые за­щитные покрытия). После этого заготовки опускают в ванну с раствором кислоты или щелочи — в зависимости от мате­риала, из которого они изготовлены. Незащищенные метал­лические поверхности травятся. Для повышения интенсивности процесса травильный раствор подогревают до температуры 40…80 °С. По окончании травления заготовки промывают, нейтрализуют, повторно промывают в горячей содовой воде, сушат и снимают защитные покрытия.

Химическое травление применяют для обработки ребер жесткости деталей, получения извилистых канавок и щелей, обработки труднодоступных для режущего инструмента по­верхностей и т.д.

Химико-механическая обработка применяется для раз­резания и шлифования пластинок из твердого сплава, при доводке твердосплавного инструмента. В качестве инструмен­та используют чугунные диски или пластины. Обработка про­исходит в ваннах, заполненных суспензией, состоящей из раствора серно-кислой меди и абразивного порошка. Заготов­ке и инструменту сообщаются относительные движения. В результате обменных химических реакций кобальтовая связ­ка твердого сплава переходит в раствор в виде соли, а зерна карбидов титана и вольфрама удаляются инструментом и присутствующим в растворе абразивным порошком.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Текст этой презентации

Электрофизические и электрохимические методы обработки материалов видео

Электрофизические и электрохимические методы обработки

Электрофизические и электрохимические методы обработки материалов видео

Электрофизические и электрохимические методы обработки, общее название методов обработки конструкционных материалов c непосредственно электрическим током, электролизом и их сочетанием с механическим воздействием.

Электрофизические и электрохимические методы обработки материалов видео

В электрофизические и электрохимические методы обработки включают также методы ультразвуковые, плазменные и ряд других методов. С разработкой и внедрением в производство этих методов сделан принципиально новый шаг в технологии обработки материалов — электрическая энергия из вспомогательного средства при механической обработке (осуществление движения заготовки, инструмента) стала рабочим агентом.

Электрофизические и электрохимические методы обработки материалов видео

Электрофизические и электрохимические методы по сравнению с обычной обработкой резанием имеют ряд преимуществ. Они позволяют обрабатывать заготовки из материалов с высокими механическими свойствами (твердые сплавы, алмаз, кварц и др.), которые трудно или практически невозможно обрабатывать другими методами. Кроме этого, указанные методы дают возможность получать самые сложные поверхности, например отверстия с криволинейной осью, глухие отверстия фасонного профиля и т. д

Электрофизические и электрохимические методы обработки материалов видео

Электрофизические и электрохимические методы обработки весьма разнообразны и условно их можно разделить на :
электрофизические (электроэрозионные, электромеханические, лучевые) электрохимические и комбинированные.

Электрофизические и электрохимические методы обработки материалов видео

Электрофизические эметоды обработки :

Электрофизические и электрохимические методы обработки материалов видео

1. Электроэрозионная обработка
В основе электроэрозионной обработки металлов лежит процесс электроэрозии, т.е. разрушения поверхностей электродов при электрическом разряде между ними ( 56). Электроэрозионную обработку производят на специальных (электроискровых, электроимпульсных) станках.

Электрофизические и электрохимические методы обработки материалов видео

Инструментом для обработки служит электрод, изготовленный из меди, латуни, бронзы, алюминия или некоторых других материалов. Он имеет форму, соответствующую форме требуемой поверхности обрабатываемой детали.

Электрофизические и электрохимические методы обработки материалов видео

Электроэрозионную обработку широко применяют для получения различных отверстий, пазов, углублений при изготовлении штампов, пресс-форм, кокилей и т.д.

Электрофизические и электрохимические методы обработки материалов видео

Электроэрозионный метод обработки объединил в себе:
Электроискровую обработку Электроимпульсную обработку

Электрофизические и электрохимические методы обработки материалов видео

Электроискровая:
Электроискровая обработка была предложена советскими учёными H. И. и Б. Р. Лазаренко в 1943. Она основана на использовании искрового разряда. При этом в канале разряда температура достигает 10000 °С, развиваются значительные гидродинамические силы, но сами импульсы относительно короткие и, следовательно, содержат мало энергии, поэтому воздействие каждого импульса на поверхность материала невелико.

Читайте также:  Диоды для зарядного устройства автомобильных аккумуляторов

Электрофизические и электрохимические методы обработки материалов видео

Метод позволяет получить хорошую поверхность, но не обладает достаточной производительностью. Кроме того, при этом методе износ инструмента относительно велик (достигает 100% от объёма снятого материала). Метод используется в основном при прецизионной обработке небольших деталей, мелких отверстий, вырезке контуров. твердосплавных штампов проволочным электродом

Электрофизические и электрохимические методы обработки материалов видео

1 – электрод-инструмент, 2 – ванна, 3 – деталь, 4 – диэлектрическая жидкость, 5 – изолятор, 6 – зарядный контур: конденсатор и сопротивление, 7 – источник постоянного тока

Электрофизические и электрохимические методы обработки материалов видео

Электроимпульсная :
Электроимпульсная обработка основана на использовании импульсов дугового разряда. Предложена советским специалистом М. М. Писаревским в 1948. Этот метод стал внедряться в промышленность в начале 1950-х гг. В отличие от искрового, дуговой разряд имеет температуру плазмы ниже (4000—5000°С), что позволяет увеличивать длительность импульсов, уменьшать промежутки между ними и т. о. вводить в зону обработки значительные мощности (несколько десятков квт), т. е. увеличивать производительность обработки.

Электрофизические и электрохимические методы обработки материалов видео

Характерное для дугового разряда преимущественно разрушение катода приводит к тому, что износ инструмента (в этом случае он подключается к аноду) ниже, чем при электроискровой обработке, составляя 0,05—0,3% от объёма снятого материала (иногда инструмент вообще не изнашивается). Более экономичный электроимпульсный метод используется в основном для черновой обработки и для трёхкоординатной обработки фасонных поверхностей.

Электрофизические и электрохимические методы обработки материалов видео

1 – электродвигатель, 2 – импульсный генератор, 3 – инструмент-электрод, 4 – деталь, 5 — ванна

Электрофизические и электрохимические методы обработки материалов видео

Схемы электроэрозионной обработки
Обработка: а – отверстия, б –фасонной полости, в – фасонного отверстия, г – отверстие с криволинейной осью, д — резка листа, е – шлифование внутренней поверхности

Электрофизические и электрохимические методы обработки материалов видео

2.Электромеханическая
Электромеханическая обработка объединяет методы, совмещающие одновременное механическое и электрическое воздействие на обрабатываемый материал в зоне обработки. К ним же относят методы, основанные на использовании некоторых физических явлений (например, гидравлический удар, ультразвук и др.).

Электрофизические и электрохимические методы обработки материалов видео

Электроэрозионный метод обработки объединил в себе:
Электроконтактную обработку Магнитоимпульсную обработку Электрогидравлическую обработку

Электрофизические и электрохимические методы обработки материалов видео

Электроконтактная
Электроконтактная обработка основана на введении в зону механической обработки электрической энергии — возбуждении мощной дуги переменного или постоянного тока (до 12 ка при напряжении до 50 в) между, например, диском, служащим для удаления материала из зоны обработки, и изделием. Применяется для обдирки литья, резки и других видов обработки, аналогичных по кинематике движений почти всем видам механической обработки.

Электрофизические и электрохимические методы обработки материалов видео

Преимущества метода — высокая производительность (до 106 мм3/мин)на грубых режимах, простота инструмента, работа при относительно небольших напряжениях, низкие удельные давления инструмента — 30—50 кн/м2 (0,3— 0,5 кгс/см2) и, как следствие, возможность использования для обработки твёрдых материалов инструмента, изготовленного из относительно мягких материалов. Недостатки — большая шероховатость обработанной поверхности, тепловые воздействия на металл при жёстких режимах.

Электрофизические и электрохимические методы обработки материалов видео

Схема процесса: 1 – деталь, 2 – роликовый электрод, 3 – трансформатор
Зачистка поверхности Резка заготовки Шлифование

Электрофизические и электрохимические методы обработки материалов видео

Магнитоимпульсная
Магнитоимпульсная обработка применяется для пластического деформирования металлов и сплавов (обжатие и раздача труб, формовка трубчатых и листовых заготовок, калибровка и т. п.) и основана на непосредственном преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого, например, при разряде батареи мощных конденсаторов на индуктор, в механическую работу при взаимодействии с проводником (заготовкой).

Электрофизические и электрохимические методы обработки материалов видео

Преимущества метода-отсутствие движущихся и трущихся частей в установках высокая надёжность и производительность лёгкость управления и компактность наличие лишь одного инструмента — матрицы или пуансона (роль другого выполняет поле) и др. Недостатки-относительно невысокий КПД затруднительность обработки заготовок с отверстиями или пазами (мешающими протеканию тока) и большой толщины.

Электрофизические и электрохимические методы обработки материалов видео

Электрогидравлическая
Электрогидравлическая обработка основана на использовании энергии гидравлического удара при мощном электрическом (искровом) разряде в жидком диэлектрике. При этом необходимо вакуумирование полости между заготовкой и матрицей, поскольку из-за огромных скоростей движения заготовки к матрице воздух не успевает уйти из полости и препятствует плотному прилеганию заготовки к матрице

Электрофизические и электрохимические методы обработки материалов видео

Метод прост, надёжен, но обладает небольшим кпд, требует высоких электрических напряжений и не всегда даёт воспроизводимые результаты. К электромеханической обработке относится также ультразвуковая обработка.

Электрофизические и электрохимические методы обработки материалов видео

3.Лучевая
К лучевым методам обработки относится обработка материалов электронным пучком и световыми лучами. Электроннолучевая обработка осуществляется потоком электронов высоких энергий (до 100 кэв). Таким путём можно обрабатывать все известные материалы (современная электронная оптика позволяет концентрировать электронный пучок на весьма малой площади, создавать в зоне обработки огромные плотности мощности).

Электрофизические и электрохимические методы обработки материалов видео

Электроннолучевые станки могут выполнять резание (в т. ч. прошивание отверстий) и сварку с большой точностью. Из-за относительно высокой стоимости, малой производительности, технической сложности станки используются в основном для выполнения прецизионных работ в микроэлектронике, изготовления фильер с отверстиями малых (до 5 мкм)диаметров, работ с особо чистыми материалами. К электрофизическим методам обработки относится также плазменная обработка.

Электрофизические и электрохимические методы обработки материалов видео

Электрохимические методы обработки :

Электрофизические и электрохимические методы обработки материалов видео

Электрохимические методы обработки Основаны на законах электрохимии. По используемым принципам эти методы разделяют на анодные и катодные , по технологическим возможностям — на поверхностные и размерные. Поверхностная электрохимическая обработка. Практическое использование электрохимических методов началось с 30-х гг. 19 в. (гальваностегия и гальванопластика). Первый патент на электролитическое полирование был выдан в 1910 Е. И. Шпитальскому.

Электрофизические и электрохимические методы обработки материалов видео

Суть метода состоит в том, что под действием электрического тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механического полирования, где снимаются только наиболее выступающие части. Электролитическое полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механического полирования — отсутствие каких-либо изменений в структуре обрабатываемого материала.

Электрофизические и электрохимические методы обработки материалов видео

Размерная электрохимическая обработка.
К этим методам обработкиотносят: анодно-гидравлическую анодно-механическую обработку.

Электрофизические и электрохимические методы обработки материалов видео

1. Анодно-гидравлическая
Анодно-гидравлическая обработка впервые была применена в Советском Союзе в конце 20-х гг. для извлечения из заготовки остатков застрявшего сломанного инструмента. Скорость анодного растворения зависит от расстояния между электродами: чем оно меньше, тем интенсивнее происходит растворение. Поэтому при сближении электродов поверхность анода (заготовка) будет в точности повторять поверхность катода (инструмента). Однако процессу растворения мешают продукты электролиза, скапливающиеся в зоне обработки, и истощение электролита.

Электрофизические и электрохимические методы обработки материалов видео

Удаление продуктов растворения и обновление электролита осуществляются либо механическим способом (анодно-механическая обработка), либо прокачиванием электролита через зону обработки. Этим методом, подбирая электролит, можно обрабатывать практически любые токопроводящие материалы, обеспечивая высокую производительность в сочетании с высоким качеством поверхности.

Электрофизические и электрохимические методы обработки материалов видео

Используемые для анодно-гидравлической обработки электрохимические станки просты в обращении, используют низковольтное (до 24 в) электрооборудование. Однако значительные плотности тока (до 200 а/см2) требуют мощных источников тока, больших расходов электролита (иногда до 1/3 площади цехов занимают баки для электролита).

Электрофизические и электрохимические методы обработки материалов видео

2.Анодно-механическая
Анодно-механическая обработка, способ обработки металлов комбинированным электрохимическим и электроэрозионным воздействием электрического тока на изделие в среде электролита. Разработан в СССР в 1943 инженером В. Н. Гусевым.Обрабатываемое изделие (анод) и электрод-инструмент (катод) включают, как правило, в цепь постоянного тока низкого напряжения (до 30 в). Электролитом служит водный раствор силиката натрия Na2SiO3 (жидкого стекла), иногда с добавлением солей других кислот.

Электрофизические и электрохимические методы обработки материалов видео

В качестве материалов для электродов-инструментов применяют малоуглеродистые стали (08 кп, 10, 20 и др.). Под действием тока металл изделия растворяется и на его поверхности образуется пассивирующая плёнка . При увеличении давления инструмента на изделие плёнка разрывается и возникает электрический разряд. Его тепловое действие вызывает местное расплавление металла. Образующийся шлам выбрасывается движущимся инструментом. Изменяя электрический режим и давление, можно получить изделия с различной шероховатостью поверхности (до 9-го класса чистоты).

Электрофизические и электрохимические методы обработки материалов видео

Работа по съёму металла при анодно-механической обработке осуществляется электрическим током в межэлектродном зазоре почти без силовой нагрузки на узлы анодно-механического станка в противоположность металлорежущим станкам, в которых эти узлы сильно нагружены. Интенсивность съёма металла практически не зависит от механических свойств обрабатываемых металлов и инструмента (твёрдости, вязкости, прочности), поэтому анодно целесообразно применять для изделий из высоколегированных сталей, твёрдых сплавов и т. п.

Электрофизические и электрохимические методы обработки материалов видео

Высокий технико-экономический эффект анодно-механической обработке даёт именно при обработке таких материалов: увеличивается производительность, уменьшаются количество отходов и расход энергии, резко снижаются затраты на инструмент. При доводочных работах Анодно-механической обработке позволяет получить высокое качество поверхности.

Электрофизические и электрохимические методы обработки материалов видео

Электрохимическая обработка
Обработка турбинной лопатки, штампа, цилиндрического отверстия
1 – ванна, 2 – деталь, 3 – электрод, 4 – электролит, 5 – поверхность, 6 – продукты анодного растворения