Индуктивность это физическая величина характеризующая

Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.

Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность – физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 Ампер за 1 секунду.

Также индуктивность можно рассчитать по формуле:

где Ф – магнитный поток через контур, I – сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды

Индуктивность взаимная – величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2).

Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:

Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.

Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.

Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.

Из законов Ома следует, что напряжение на обмотке равно

(1)

где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда

Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:

(2)

Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз = w1/w2 = 1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.

Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником

часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен

Читайте также:  Техника выполнения сварных швов
. (1.14)

На основании закона Ома для магнитной цепи (1.7) можно написать выражение для потока рассеяния:

.

Так как , то .То есть поток рассеяния , в отличие от потока в сердечнике, совпадает по фазе с током и связан с ним линейной зависимостью. Следовательно, на векторной диаграмме вектор потока будет совпадать с вектором тока (рис.1.12).

Рис.1.12. Векторная диаграмма магнитных потоков, ЭДС и токов катушки с ферромагнитным сердечником

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9586 – | 7565 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Целью данной работы является изучение явления электромагнитной индукции и его законов, измерение индуктивности катушки, исследование зависимости индуктивности катушки от силы тока, протекающего по ее обмотке, а также индуктивности катушки, ее полного и индуктивного сопротивлений от частоты переменного тока.

Всякий контур, по которому течет ток, пронизывается магнитным полем, созданным этим током. Если сила тока в контуре меняется, то изменяется и сцепленный с контуром магнитный поток, поэтому вследствие явления электромагнитной индукции в контуре возникает ЭДС. Возникновение ЭДС в контуре при изменении силы тока в нем называется самоиндукцией. В соответствии с законом Фарадея величина ЭДС индукции пропорциональна скорости изменения магнитного потока, пронизывающего контур, то есть,

(2.07.1)

Магнитный поток, создаваемый током, протекающим в контуре, называется потоком самоиндукции s. Поток самоиндукции пропорционален индукции магнитного поля, создаваемого этим током, которая, в свою очередь, пропорциональна величине силы тока в контуре. Поэтому магнитный поток самоиндукции пропорционален величине силы тока

, (2.07.2)

где L – индуктивность контура.

Индуктивность контура – это скалярная физическая величина, характеризующая способность контура создавать поток самоиндукции и зависящая от его формы, размеров и магнитной проницаемости среды. Из (2.07.2) следует, что индуктивность контура измеряется величиной магнитного потока, сцепленного с контуром, при силе тока в нем равной 1 А. За единицу измерения индуктивности в системе СИ принимается 1 Гн – это индуктивность такого контура, с которым сцеплен магнитный поток в 1 Вб при силе тока в контуре, равной 1 А.

При неизменной индуктивности закон Фарадея для самоиндукции выглядит следующим образом:

(2.07.3)

т. е. ЭДС самоиндукции пропорциональна скорости изменения силы тока в контуре. В соответствии с законом Фарадея можно дать другое определение индуктивности. Индуктивность определяется величиной ЭДС, возникающей в контуре, при изменении в нем силы тока на 1 А за 1 с. Тогда, согласно (2.07.3), 1 Гн – это индуктивность такого контура, в котором индуцируется ЭДС, равная 1 В, при изменении в нем силы тока на 1 А за 1 с. Знак минус в формуле (2.07.3) отражает правило Ленца, согласно которому самоиндукция противодействует всякому изменению силы тока в контуре и представляет собой аналогию с инерцией в механике.

В электрической цепи наличие индуктивности приводит к возникновению добавочного индуктивного сопротивления катушки переменному току

Читайте также:  Схемы импульсных зарядных устройств для автомобильных аккумуляторов

, (2.07.4)

где – частота переменного тока.

Модуль полного сопротивления Z катушки переменному току определяется по закону Ома

(2.07.5)

где U и I – эффективные значения напряжения и силы тока в катушке.

Полное сопротивление катушки Z складывается из сопротивления катушки в цепи постоянного тока R (омического или активного сопротивления) и индуктивного сопротивления XL в соответствии с формулой:

. (2.07.6)

или, подставив

(2.07.7)

из которого можно выразить индуктивность катушки L

(2.07.8)

Соотношение (2.07.8) лежит в основе опыта по определению индуктивности. Для того, чтобы определить индуктивность, необходимо измерить частоту переменного тока, действующее значение силы переменного тока, протекающего через катушку, действующее значения напряжения на катушке и омическое сопротивление катушки.

Индуктивность длинного соленоида с сердечником может быть рассчитана по формуле

, (2.07.9)

где – магнитная проницаемость сердечника; – магнитная постоянная;n – число витков, приходящихся на единицу длины катушки; V – объем катушки.

Измеряя индуктивность катушки, можно определять магнитную проницаемость материала, из которого изготовлен сердечник. В частности, таким способом можно определять магнитную проницаемость горных пород. Определив индуктивность катушки с сердечником из исследуемой породы Lс и без сердечника L, по отношению этих индуктивностей LС/L определяют . Определение магнитной проницаемости горных пород и минералов необходимо для изучения вопросов, связанных с установлением качества железных руд и железистых пород, магнитным обогащением полезных ископаемых, с разведкой рудных тел, исследованием трещиноватости массива горных пород.

Необходимые приборы: лабораторный стенд, внутри которого смонтированы все элементы схемы; генератор периодических сигналов; цифровой вольтметр. Рабочая схема опыта показана на рис. 18 и на панели стенда.

Проводник с электрическим током имеет способность накапливать энергию в магнитном поле. Подобное явление называется индуктивностью. У обычного проводника, имеющего прямую форму, эта величина имеет небольшое значение, но если проводнику придать вид спирали и одинаковую направленность тока с соседними проводниками, то их поля будут взаимодействовать. При этом усилится индуктивность. Но есть факт того, что воздух значительно их ослабляет.

Человеческий мозг предположил следующее: поле должно протекать вокруг проводников не по воздуху, а по железу, сопротивляемость которого магнитному полю намного меньше. Такие катушки являются индуктивными.

Свойства

При подаче напряжения к индуктивной катушке, в ней происходит линейное нарастание тока, а при его снятии начинается его падение. Моментально остановить его протекание в катушке не представляется возможным, как, например, нельзя сразу остановить автомобиль, мчащийся на скорости. При попытке быстро остановить нарастание этого параметра, произойдёт удар напряжения, равный тому, что оно, при этом, может вызвать искровой разряд. Подобное явление получило название самоиндукция. На этом принципе основана работа катушки зажигания в автомобиле.

Коэффициент самоиндукции — это есть индуктивность. Иными словами: величина, которая характеризует связь между находящимся в проводнике электрическим током и магнитным полем, создаваемым при протекании. Эта мера представляет сумму потока индукции. Прямая зависимость её от конфигурации проводника и от проницаемости доказана.

При подаче на катушку электрического тока постоянного напряжения, в катушке возникает напряжение, противоположное напряжению электрического тока (Е =U), которое исчезает через некоторое время. Это противоположное напряжение называется ЭДС (электродвижущей силой самоиндукции). Параметр зависит от индуктивности катушки.

Читайте также:  Клепальник ручной для одежды

Как найти индуктивность

Формулы индуктивности будут выглядеть следующим образом:

  • Ф = LI (магнитный поток в контуре);
  • Е= LdI/dt (ЭДС самоиндукции).

ЭДС определяет энергию магнитного поля, от этой величины зависит противодействие системы при изменении тока. При этом ЭДС самоиндукции направлена противоположно последнему.

Перевод слова «индукция» с латинского языка (induct) — побуждение, наведение. Исходя из сказанного, понятно, что это величина, которая характеризует магнитные свойства электрической цепи. Ток проводящего контура создаёт в окружающем его пространстве магнитное поле. При этом, возникающий в контуре поток Ф, имеет прямую ему пропорциональность. Формально записывается это так: Ф=LI, где L — коэффициент пропорциональности или коэффициент самоиндукции контура. Его определяют размеры и формы контура, а также, магнитная проницаемость среды.

Энергия W магнитного поля тока I определяется по формуле: W =LI2/2. При проведении аналогии между электрическим и механическими явлениями, энергия сопоставима с кинетической энергией тела T=mv2/2, где m — масса, v — скорость. Тогда индуктивность подобна массе, а ток — скорости. Это наглядное сравнение помогает лучше понять суть. Эта интересная характеристика определяет инерционные свойства электрического тока.

На практике для увеличения её значения применяют катушки с сердечниками из ферромагнетиков, их свойства имеют зависимость от напряжённости магнитного поля и, следовательно, I. В основном это ферритовые пластины из электротехнической стали. Эффективность применения сердечников довольно значительна: индуктивность катушки возрастает в несколько раз. Помимо цилиндрических, распространены тороидальные варианты, они позволяют достичь большей индуктивности, из-за наличия замкнутого магнитного потока.

Индуктивность соленоида определённой длины, имеющего N витков и площадь поперечного сечения S в среде, имеющей проницаемость m равна:

где m0— магнитная проницаемость вакуума.

Определение индуктивности

Измерение индуктивности катушки можно провести в лабораторных условиях. За единицу индуктивности в системе СИ принимается 1 Генри — она измеряется в контуре с магнитным потоком в 1 Вб, сила тока при этом в контуре равна 1 Амперу. В системе Гаусса индуктивность равняется 1 Гн = 10⁹ см.

Для того, чтобы её определить, нужно измерить действующее значение переменного тока и его частоту, а также, напряжение на катушке и её активное сопротивление:

  1. R —омическое сопротивление катушки.
  2. F — частоту переменного тока.
  3. U — напряжение.
  4. I — силу тока.

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

  • сглаживание пульсаций и помех, накопление энергии;
  • создание магнитных полей в различных устройствах;
  • фильтры цепей обратной связи;
  • создание колебательных контуров;
  • трансформаторы (устройство из двух катушек, связанных индуктивно);
  • силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
  • ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
  • применение катушек в качестве электромагнитов различных исполнительных механизмов;
  • обмотки электромагнитных реле;
  • индукционные печи;
  • установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.