- Вступление.
- Отличие схемы КЛЛ от импульсного БП.
- Какой мощности блок питания можно изготовить из КЛЛ?
- Импульсный трансформатор для блока питания.
- Ёмкость входного фильтра и пульсации напряжения.
- Блок питания мощностью 20 Ватт.
- Блок питания мощностью 100 Ватт.
- Выпрямитель.
- Как правильно подключить импульсный блок питания к сети?
- Как наладить импульсный блок питания?
- Каково назначение элементов схемы импульсного блока питания?
- Описание
- Принцип работы
- Область применения
- Преимущества и недостатки
- Схема
- Как сделать своими руками
- Пошаговое руководство
- Регулируемый/однотактный/двухтактный/двухполярный блок своими руками
- Ремонт ИБП
- Информация о приборе
- Где используются
- Достоинства и недостатки
- Сборка
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.
Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.
Вступление.
В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.
В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.
Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.
В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.
Отличие схемы КЛЛ от импульсного БП.
Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.
А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.
Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.
Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.
Какой мощности блок питания можно изготовить из КЛЛ?
Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.
Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.
В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.
Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.
В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.
Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.
Импульсный трансформатор для блока питания.
Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.
Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂
Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.
Ёмкость входного фильтра и пульсации напряжения.
Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.
Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.
Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.
Блок питания мощностью 20 Ватт.
Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.
На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.
Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.
Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!
Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.
Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.
Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.
Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.
На картинке действующая модель БП.
Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС
Блок питания мощностью 100 Ватт.
Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.
Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.
Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.
Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.
Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.
Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.
Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.
Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!
На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.
- Винт М2,5.
- Шайба М2,5.
- Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
- Корпус транзистора.
- Прокладка – отрезок трубки (кембрика).
- Прокладка – слюда, керамика, фторопласт и т.д.
- Радиатор охлаждения.
А это действующий стоваттный импульсный блок питания.
Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)
Выпрямитель.
Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.
Существуют две широко распространённые схемы двухполупериодных выпрямителей.
1. Мостовая схема.
2. Схема с нулевой точкой.
Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.
Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.
Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.
100 / 5 * 0,4 = 8(Ватт)
Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.
100 / 5 * 0,8 * 2 = 32(Ватт).
Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂
В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.
Как правильно подключить импульсный блок питания к сети?
Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.
При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.
На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.
А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.
Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.
Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.
Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.
Как наладить импульсный блок питания?
Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.
Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.
Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.
Если сильно греются транзисторы, то нужно установить их на радиаторы.
Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.
Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.
Каково назначение элементов схемы импульсного блока питания?
R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.
VD1… VD4 – мостовой выпрямитель.
L0, C0 – фильтр питания.
R1, C1, VD2, VD8 – цепь запуска преобразователя.
Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.
R2, C11, C8 – облегчают запуск преобразователя.
R7, R8 – улучшают запирание транзисторов.
R5, R6 – ограничивают ток баз транзисторов.
R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.
VD7, VD6 – защищают транзисторы от обратного напряжения.
TV1 – трансформатор обратной связи.
L5 – балластный дроссель.
C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.
Описание
В продолжительной поездке на личном автомобиле или отдыхая «дикарем» на природе, неплохо иметь с собой домашние электрооборудование, например, фен, электрическую бритву, фото или видеокамеру. Но из-за отсутствия розеток невозможно обеспечить питание приборов от обычной сети.
Но не стоит отчаиваться, выход из такой ситуации есть – это использование небольшого импульсного преобразователя тока. Он поможет превратить «воду в вино», то есть 12 вольт напряжения аккумулятора, в ток, требуемый для работы всех приборов − 220 вольт.
Принцип работы
Принцип его работы заключается в конвертировании переменного напряжения из электросети, имеющее частоту 50 Гц в аналогичное прямоугольного типа. Затем оно подвергается трансформации для достижения определенных значений, выпрямляется и отфильтровывается. Такой транзистор повышенной мощности, исполняющий одновременно роль импульсного трансформатора и ключа, преобразует напряжение тока.
Также такие трансформаторы выпускаются разных размеров и мощностей в зависимости от специфики применения, но габариты в них не главное так, как эффективность таких устройств повышается по мере нарастания частоты, увеличение которой позволяет серьезно уменьшить размер и вес стального сердечника. Они, как правило, работают в частотном диапазоне от 18 до 50 кГц.
Область применения
Область применения импульсных преобразователей питания для бытового использования постоянно ширится. Они сегодня используются для обеспечения энергией всех приборов бытовой и вычислительной техники, а также в устройствах бесперебойного питания и зарядных устройствах для АКБ разного назначения, питания низковольтных осветительных систем и других нужд.
Часто приобретение такого устройства заводской сборки не очень оправдано, по соображениям экономии или с точки зрения специфики технических параметров требуемого агрегата. В этом случае собственноручное сооружение импульсного преобразователя может быть лучшим вариантом. Такой подход, как правило, более рационален благодаря широкому выбору недорогих комплектующих.
Преимущества и недостатки
Покупая ИБП, необходимо соотнести все его достоинства и недостатки с конкретными требованиями к эксплуатации в каждом частном случае и если он им удовлетворяет можно смело приобретать агрегат.
Преимущества импульсных блоков питания:
- Малый вес агрегата, благодаря меньшему размеру требуемого для работы трансформатора, и как следствие уменьшенной конструкции всего преобразователя. Конструкция оснащается фильтром выходного напряжения меньших размеров, так как, при сопоставимой мощности с аналогами импульсное устройство имеет большую частоту преобразования.
- Агрегаты повышенной мощности имеют наивысший КПД, доходящий до 90-98%. Такие устройства имеют минимальные потери энергии благодаря минимальному количеству операций переключения ключа, так как он большую часть времени находится в одном положении, в то время как в агрегатах других типов на операции с ним расходуется значительная мощность.
- На порядок более высокая степень надежности стабилизаторов импульсного типа в сравнении с линейными аналогами, которые сейчас используются только в питании плат со слабыми токами, например, СВЧ печах или колонках и других агрегатах малой мощности, созданных для непрерывной эксплуатации в течение нескольких лет без техобслуживания.
- Кроме того их преимуществом является расширенный диапазон частоты и напряжения тока, который могут быть реализованы только в очень дорогих, недоступных обычному потребителю, блоках линейного типа. Это позволяет использовать переносной импульсный блок даже при путешествиях по всему миру, так как его характеристики можно регулировать в широком диапазоне, подстраивая их для работы от розеток в разных странах с разными частотами и напряжением в электросети.
- В отличие от линейных устройств, благодаря универсальности импульсных преобразователей мощностью 12 V налажен массовый выпуск комплектующих для них, что положительным образом снизило их себестоимость и повысило доступность для рядового потребителя. Однако на более мощные их варианты эта особенность, конечно, не распространилась, они стоят дорого.
- Как правило, такие устройства в конструкции имеют несколько степеней защиты от аварийных ситуаций в сети: перебоев питания, короткого замыкания, отсутствия выходной нагрузки.
Недостатки импульсных блоков питания:
- Работы по их ремонту отличаются сложностью, так как большинство их внутренних элементов функционируют в совместной сети без какой-либо гальванической развязки.
- Сам импульсный принцип работы имеет оборотную сторону в виде высокочастотных помех, которые требуют подавления для использования блоков с большинством аппаратуры. А с некоторыми ее видами, обладающими повышенной чувствительностью к помехам они и вовсе не совместимы.
- Входящий ток имеет ограничение на минимальную мощность, при которой блок начнет работать.
Схема
Основой большинства преобразователей тока импульсного типа является блок-схема простейшего импульсного трансформатора, включающая в себя несколько блоков:
- Блок, преобразующий ток сети переменного типа в постоянный на выходе. В его основе диодный мост, который исполняет роль выпрямителя переменного напряжения и конденсатор, нивелирующий пульсации напряжения подвергшегося выпрямлению. Он может быть оснащен вспомогательными приборами: фильтрами напряжения сети, сглаживающими пульсации генератора импульсов и термисторами для ослабления скачка напряжения при включении. Наличие или отсутствие дополнительных компонентов влияет на себестоимость агрегата, и является статьей экономии при покупке бюджетного варианта агрегата.
- Блок генератора импульсов, создающий для питания первичной обмотки трансформатора импульсы заданной частоты. Различные модели работают с разной частотой, но границы ее колебания для всех устройств находятся в пределах от 30 до 200 кГц. Трансформатор является сердцем прибора, так как именно посредством него происходит гальваническая развязка с электросетью и преобразование тока для соответствия требуемым параметрам.
- Третий − блок трансформации переменного тока, поступающего с трансформатора в постоянный. В него входят диоды для выпрямления напряжения и фильтры пульсаций, которые значительно сложнее своего аналога из первого блока и включают в себя уже несколько конденсаторов и дроссель. В качестве статьи экономии, для уменьшения себестоимости преобразователи могут комплектоваться конденсаторами и дросселями минимально необходимой для работы, емкости и индуктивности соответственно.
Как сделать своими руками
Необходимые инструменты:
Пошаговое руководство
- Первым делом на входе устанавливается РТС термистор, выполняющий роль полупроводникового резистора с плюсовым коэффициентом по температуре. Он способен резко увеличить свое сопротивление при превышении определенного значения температуры, например, когда необходимо защитить силовые ключи, когда агрегат только начинает работать и конденсаторы еще заряжаются.
- Далее, монтируется диодный мост для выпрямления входящего напряжения сети током 10А. Можно использовать разные диодные сборки: «вертикалку» или «табуретку».
- Затем на входе паяется пара конденсаторов в соотношении 1 мкФ на 1 Вт мощности.
- Используются отечественные резисторы типа МЛТ-2 в качестве гасящего сопротивления в сети переменного тока мощностью 2 Вт.
- Для регулировки затворов полевых транзисторов, функционирующих под током 600В, монтируется драйвер IR Он попеременно открывает затворы полевых транзисторов с периодичностью, определяемой деталями на ножках Rt и Ct.
- Полевые транзисторы выбираются не меньше 200В, имеющие минимальное сопротивление в открытой фазе работы. Величина сопротивления прямо пропорциональна нагреву устройства и обратно пропорциональна его КПД.
- При их монтаже фланцы транзисторов нельзя закорачивать, поэтому применяются прокладки для изоляции.
- Трансформатор, проще взять обычный понижающий из старого блока ПК. Но можно и самостоятельно намотать на ферритовые торы из расчета на преобразующую частоту 100 кГц и ½ преобразованного напряжения.
- Трансформаторные выводы закорачивают аналогично плате, из которой он взят.
- На выходе устанавливаются диоды с небольшими таймингами восстановления − не более 100 нс, например, из группы HER.
- Буферную емкость на выходе не стоит преувеличивать более 10 тыс. мкФ.
- Как и любой электрический агрегат, самодельный импульсный блок питания при сборке предъявляет повышенные требования к внимательности и аккуратности в процессе сборки. Необходим верный монтаж полярных деталей и выполнение мер предосторожности в работе с электросетью. Верно, сконструированный блок не требует до настройки или подлаживания.
Регулируемый/однотактный/двухтактный/двухполярный блок своими руками
- Для сборки регулируемого блока питания необходимо в его схеме сборки использовать один или два транзистора полупроводникового типа. Однако для контроля напряжения понадобится установить датчик в виде вольтметра. Тогда ориентируясь на его показания, можно будет отрегулировать оптимальное напряжение на выходе для работы разных приборов, чтобы не пожечь их. Напряжение регулируется при помощи резистора переменного типа.
- В самом простом однотактном блоке ток преобразуется за счет работы одного транзистора, который открывается и закрывается, пропуская импульсы определенной частоты.
- Его усовершенствованной модификацией, работающей с удвоенной частотой и соответственно лучшим КПД, является двухтактный преобразователь, в котором друг за другом открываются и закрываются уже два транзистора.
- Двухполярная конструкция блока еще сложнее, так как необходим монтаж операционного усилителя и стабилитронов. Особое внимание в этом случае следует уделять качеству пайки и соответствию сечения проводов току.
Ремонт ИБП
Ремонт ИБП, как правило, заключается в замене, неисправных, погоревших деталей на новые. Но сложность даже не в самом монтаже новой детали, а именно в поиске неисправной. Для этого производят следующие операции:
- Внешний осмотр платы блока на предмет наличия вздувшихся конденсаторов, обуглившихся резисторов и других элементов с дефектами.
- Осмотр пайки трансформатора, ключевых транзисторов и микросхем, а также дросселей.
- Проверка цепи питания на предмет разрыва: позванивают сам кабель, предохраняющий переключатель, переключатель тока при его наличии, а также дроссели и выпрямительный мост.
- Первичная диагностика любой детали производится без демонтажа, и только когда есть вполне обоснованное предположение о том, что она неисправна, ее можно выпаивать и проверять отдельно.
- Также необходимо проверить цепь на предмет коротких замыканий.
- Проведя визуальную и приборную диагностику оборудования и поменяв нерабочие элементы, приступают к проверке под рабочим напряжением сети. Но в роли предохранителя используется обычная лампочка на 150-200 Ватт 220 вольт. Она не даст сгореть всему преобразователю при наличии неисправности и просигнализирует о характере дефекта. Так, если лампочка ярко вспыхнет и притухнет, излучая растр, то, скорее всего, неисправны конденсаторы. Проверить их на исправность можно только заменив на новые. Другим случаем является вариант, когда лампа вспыхнула и сразу же погасла совсем. Этот вариант предусматривает индивидуальную проверку всех резисторов цепи запуска. Наконец последний случай – светильник горит на полную яркость. В этом случае надо полностью перепроверить всю схему заново.
Радиолюбители многое из электроники предпочитают изготавливать своими руками. Это дает много преимуществ, как в плане сохранения денежных средств, так и гарантий качества собранного изделия.
Очень часто радиолюбители предпочитают делать блок питания (БП), так как именно такое приспособление является основой домашней лаборатории.
В сегодняшней статье речь пойдет о таком БП, как импульсный блок питания регулируемого типа. Многие умельцы изготавливают его своими руками.
Информация о приборе
В жизни очень часто возникают ситуации, когда нужен такой прибор, как блок питания. От этого изделия можно запитать многие электрические приборы. Конечно, в такой ситуации можно использовать различные аналоги, например, автомобильные аккумуляторы. Но у них есть большой недостаток, который заключается в подаче постоянного напряжения в 12 В. А этого не хватает для подпитки стандартной бытовой аппаратуры.
Отличным решением в таких ситуациях будет использование импульсного преобразователя тока (регулируемого блока питания). Особенность такого прибора является возможность преобразовывать имеющееся напряжение, например 12 В, в то, которое нам нужно – 220 В.
Это стало возможным благодаря особому принципу работы. Он заключается в конвертировании переменного напряжения, имеющегося в сети с частотой 50 Гц, в аналогичное прямоугольного типа. После этого напряжение подвергается трансформации с целью достижения требуемого значения, выпрямляется и отфильтровывается. Схема работы такого прибора имеет следующий вид.
БП обладает повышенной мощностью (благодаря транзистору) и может одновременно выполнять роль ключа и импульсного трансформатора, преобразуя напряжение тока.
Обратите внимание! Эффективность работы блока питания (регулируемого типа) повышается входе нарастания частоты. Ее увеличение дает возможность значительно уменьшить вес и размеры используемого внутри изделия стального сердечника.
Импульсный тип блока питания может быть двух типов:
- управляемые извне. Такой блок питания используется в большинстве электрических приборов;
- автогенераторы импульсного типа.
Схема сборки для каждого типа блока питания будет отличаться.
При этом выпускаемые серийные модели могут иметь разные показатели мощности и габариты. Все зависит от специфики их использования.
Заводские приборы такого типа функционируют в частотном диапазоне от 18 до 50 кГц. Но такую модель можно сделать при желании и своими руками. Некоторые любители радиоэлектроники могут даже переделать старый блок питания под новые потребности. Для новичков существует простая схема, которая позволит справиться с ней даже совсем неопытному человеку. Такая переделка ничем не будет уступать по качеству и техническим параметрам покупной модели.
Где используются
Область использования регулируемого типа импульсного блока питания с каждым годом расширяется. Это вязано с появлением все нового оборудования и новых сфер деятельности человека.
Блоки питания импульсного характера применяются в следующих областях:
- обеспечение энергии всех вариантов электроприборов (вычислительной техники и бытовых приборов);
- бесперебойное питание зарядных устройств, применяемых к аккумуляторным батареям;
- обеспечение питания низковольтных систем освещения. К таким типам подсветки относится использование светодиодных лент.
Во всех этих ситуациях собранный своими руками прибор будет функционировать не хуже заводских моделей. При этом вы можете сделать его более универсальным. Простой тип блока питания самостоятельной сборки станет незаменимой частью вашей домашней лаборатории.
Достоинства и недостатки
Импульсный регулируемый блок питания имеет следующие преимущества:
- небольшой вес. Это связано с тем, что здесь нужен трансформатор меньшего размера;
- более удобная конструкция преобразователя;
- наличие фильтра для выходного напряжения, который также имеет небольшие габариты;
- наивысший показатель КПД, который может доходить до 90-98%.Благодаря этому данный тип прибора имеет минимальную потерю энергии;
- на порядок больше степень надежности стабилизаторов;
- расширенный диапазон частоты. Это параметр касается также напряжения тока. Обычно такие возможности имеются в дорогих линейных блоках;
- массовый выпуск комплектующих, а отсюда — доступная стоимость сборки блока.
Кроме этого, такой тип прибора может обладать несколькими степенями защиты от:
- перебоев питания;
- перепадов напряжения;
- отсутствия выходной нагрузки;
- короткого замыкания.
Но помимо преимуществ у этого изделия имеются и недостатки:
- ремонт такого прибора несколько усложнен. Это связано с тем, что элементы блока питания функционируют без гальванической развязки;
- могут возникнуть высокочастотные помехи;
- повышенная чувствительность к помехам.
Также здесь имеется ограничение по минимальной мощности, при которой блок питания начнет работать. Схема, используемая для сборки изделия своими руками, может потреблять значительное количество мощности.
Также сборочная схема может требовать двухполярного питания. Для питания более мощных электрических систем следует использовать отдельный блок питания с необходимым количеством полюсов, мощность. При этом для напряжения также должно быть определены конкретные показатели. Поэтому для сборки своими руками, если вы являетесь любителем, нужна схема простого однополярного маломощного прибора.
Сборка
Многие радиолюбители для создания импульсного блока питания регулируемого типа используют другие модели старых преобразователей. Например, для этих целей отлично подойдет компьютерный БП. Здесь понадобится лишь треть его схемы.
Сборка имеет вид следующего алгоритма:
- изымаем схему из старого преобразователя;
- из нее следует вырезать часть, которая идет до трансформатора;
Примерный вид схемы
- далее из блока следует достать транзисторы для усиления сигнала, поступающего от генератора высокой частоты;
- для того чтобы сделать генератор, можно использовать самые простые схемы;
- для трансформатора, если его не получилось разобрать, можно использовать сердечник с внутренним сечением стержня в 25-30 мм2. Для первичной обмотки используем 40 витков, а для вторичной — 2х8 витков;
Обратите внимание! Чтобы избежать проникновения посторонних шумов с высокой частотой, трансформатор следует залить лаком.
- развязывающий трансформатор также берем из компьютерного блока. Его можно намотать на любой малогабаритный сердечник. Используем для этого тонкий провод;
- для охлаждения устанавливаем вентилятор. Он будет включаться при достижении тока в 1,5 А. При меньших показателях будет достаточно естественного охлаждения. Для включения вентилятора устанавливаем резистор R20.
Все детали нужно установить на печатную плату.
После этого необходимо распаять все детали и установить их в корпус. Теперь остается только установить вольтметр и амперметр. В результате вы получите простой импульсный блок питания с возможностью регулировать напряжение.
В результате напряжение прибора составит от 2В до напряжения на вторичной обмотке.
Сделать импульсный блок питания регулируемого типа можно, используя разные схемы. При этом нужно точно следовать выбранной схеме и правильно припаять все составные части на плату. Используя качественные детали, вы своими руками изготовите нужный блок питания и сможете использовать его в самых разнообразных сферах, подключая к нему бытовые и вычислительные приборы.