Формула коэффициента жесткости в физике

Формула коэффициента жесткости в физике

При колебаниях пружины восстанавливающая сила обусловлена ее упругостью. В определенных пределах, согласно закону Гука, вызванная деформацией сила пропорциональна величине деформации.

Поэтому упругие колебания являются гармоническими. В случае пружин величина жесткости обычно обозначается через k и именуется коэффициентом упругости пружины.

kкоэффициент упругости пружины,Ньютон / метр
Fсила, вызывающая деформацию Δl,Ньютон
Δlудлинение, прогиб или другое изменение формы,метр
ωугловая частота,радиан / секунда
fлинейная частота,Герц
Tпериод, длительность полного колебания,секунда
mмасса колебательной системы, обычно тела, укрепленного на пружине,кг

И в соответствии с (9)

Масса самой пружины в (3, 4, 5) не учитывается. При точных расчетах массу m следует увеличить приблизительно на mпр/ 3 ( mпр — масса пружины).
Величины ω, f и T не зависят от амплитуды.

Мы уже неоднократно пользовались динамометром – прибором для измерения сил. Познакомимся теперь с законом, позволяющим измерять силы динамометром и обуславливающим равномерность его шкалы.

Известно, что под действием сил возникает деформация тел – изменение их формы и/или размеров. Например, из пластилина или глины можно вылепить предмет, форма и размеры которого будут сохраняться и после того, когда мы уберём руки. Такую деформацию называют пластической. Однако, если наши руки деформируют пружину, то когда мы их уберём, возможны два варианта: пружина полностью восстановит форму и размеры или же пружина сохранит остаточную деформацию.

Если тело восстанавливает форму и/или размеры, которые были до деформации, то деформация упругая. Возникающая при этом в теле сила – это сила упругости, подчиняющаяся закону Гука:

Формула коэффициента жесткости в физике

F упр – модуль силы упругости тела, Н
| D l| – модуль удлинения тела, м
k – коэффициент жёсткости тела, Н/м

Поскольку удлинение тела входит в закон Гука по модулю, этот закон будет справедлив не только при растяжении, но и при сжатии тел.

Формула коэффициента жесткости в физике

Опыты показывают: если удлинение тела мало по сравнению с его длиной, то деформация всегда упругая; если удлинение тела велико по сравнению с его длиной, то деформация, как правило, будет пластической или даже разрушающей. Однако, некоторые тела, например, резинки и пружины деформируются упруго даже при значительных изменениях их длины. На рисунке показано более чем двухкратное удлинение пружины динамометра.

Для выяснения физического смысла коэффициента жёсткости, выразим его из формулы закона. Получим отношение модуля силы упругости к модулю удлинения тела. Вспомним: любое отношение показывает, сколько единиц величины числителя приходится на единицу величины знаменателя. Поэтому коэффициент жёсткости показывает силу, возникающую в упруго деформированном теле при изменении его длины на 1 м.

  1. Динамометр является .
  2. Благодаря закону Гука в динамометре наблюдается .
  3. Явлением деформации тел называют .
  4. Пластически деформированным мы назовём тело, .
  5. В зависимости от модуля и/или направления приложенной к пружине силы, .
  6. Деформацию называют упругой и считают подчиняющейся закону Гука, .
  7. Закон Гука носит скалярный характер, так как с его помощью можно определить только .
  8. Закон Гука справедлив не только при растяжении, но и при сжатии тел, .
  9. Наблюдения и опыты по деформации различных тел показывают, что .
  10. Ещё со времени детских игр мы хорошо знаем, что .
  11. По сравнению с нулевым штрихом шкалы, то есть недеформированным начальным состоянием, справа .
  12. Чтобы понять физический смысл коэффициента жёсткости, .
  13. В результате выражения величины «k» мы .
  14. Ещё из математики начальной школы мы знаем, что .
  15. Физический смысл коэффициента жёсткости состоит в том, что он .
Читайте также:  Работа с микрометром видео

Задача. К пружине, начальная длина которой 10 см, подвесили груз массой 1 кг. При этом пружина удлинилась до 15 см. Определите коэффициент жёсткости для данной пружины. С каким периодом подвешенный груз будет совершать вертикальные колебания на такой пружине?

Решение. Эта задача будет иметь решение, только если мы убедимся, что деформация пружины упруга. То есть при снятии груза пружина должна принять первоначальную длину, равную 10 см. Ответ на этот вопрос даст только опыт, то есть задача – отчасти экспериментальная.

Используя третий закон Ньютона в скалярной форме, а также закон Гука, подсчитаем коэффициент упругости пружины:

Формула коэффициента жесткости в физике

F тяж = F упр = k·| D l| = k · |l–l o | = k · ( l–l o )

Формула коэффициента жесткости в физике

Подставив жёсткость пружины 200 Н/м в формулу для периода колебаний пружинного маятника (см. § 11-б), вычислим период:

Формула коэффициента жесткости в физике

Ответ. Жёсткость пружины равна 200 Н/м, и 10 колебаний маятника будут совершены за 4 секунды, что можно проверить секундомером.

Пока мы вели речь только о твёрдых телах. Однако сила упругости возникает и в жидкостях, и в более сложных телах, например, воздушном шарике, состоящем из резиновой оболочки и воздуха. Можно ли к таким телам применять закон Гука (и если можно, то при насколько больших деформациях), нам даст ответ только эксперимент. Он же позволит вычислить коэффициенты жёсткости для этих тел.

  1. Какова длина недеформированной пружины?
  2. Чему равно удлинение пружины?
  3. В каком случае мы имеем право применить закон Гука?
  4. Проверить это можно следующим образом: .
  5. Коэффициент жёсткости по результатам вычислений равен .
  6. Проверить полученное значение мы можем путём измерения .
  7. При проверке нам нужно убедиться, что .
  8. Сила упругости возникает не только в .
  9. Закон Гука позволяет найти силу упругости .
  10. Важно: только предварительный эксперимент по изучению характера деформации позволит нам выяснить, .
  11. В случае упругой деформации тел, следующий эксперимент .

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Читайте также:  Инфракрасный фен для пайки

Коэффициент упругости численно равен силе, которую надо приложить к пружине, чтобы её длина изменилась на единицу расстояния. Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: Формула коэффициента жесткости в физике[4] Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения Формула коэффициента жесткости в физикеи длины Формула коэффициента жесткости в физике), записав коэффициент упругости как Формула коэффициента жесткости в физикеВеличина Формула коэффициента жесткости в физикеназывается модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала пружины [5] .

Жёсткость деформируемых тел при их соединении

Формула коэффициента жесткости в физике

Формула коэффициента жесткости в физике

Формула коэффициента жесткости в физике

Формула коэффициента жесткости в физике

При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается.

Параллельное соединение

При параллельном соединении Формула коэффициента жесткости в физикепружин с жёсткостями, равными Формула коэффициента жесткости в физикежёсткость системы равна сумме жёсткостей, то есть Формула коэффициента жесткости в физике

В параллельном соединении имеется Формула коэффициента жесткости в физикепружин с жёсткостями Формула коэффициента жесткости в физикеК ним прикладывается сила Формула коэффициента жесткости в физикеПри этом к пружине 1 прикладывается сила Формула коэффициента жесткости в физикек пружине 2 сила Формула коэффициента жесткости в физике… , к пружине Формула коэффициента жесткости в физикесила Формула коэффициента жесткости в физике

Из III закона Ньютона, Формула коэффициента жесткости в физике

Теперь из закона Гука выведем: Формула коэффициента жесткости в физикеПодставим эти выражения в равенство (1): Формула коэффициента жесткости в физикесократив на Формула коэффициента жесткости в физикеполучим: Формула коэффициента жесткости в физикечто и требовалось доказать.

Последовательное соединенение

При последовательном соединении Формула коэффициента жесткости в физикепружин с жёсткостями, равными Формула коэффициента жесткости в физикеобщая жёсткость равна единице, делённой на сумму обратных величин жёсткостей, то есть Формула коэффициента жесткости в физике

В последовательном соединении имеется Формула коэффициента жесткости в физикепружин с жёсткостями Формула коэффициента жесткости в физикеИз закона Гука следует, что Формула коэффициента жесткости в физикеСумма удлинений каждой пружины равна общему удлинению всего соединения Формула коэффициента жесткости в физике

На каждую пружину действует одна и та же сила Формула коэффициента жесткости в физикеСогласно закону Гука, Формула коэффициента жесткости в физикеИз предыдущих выражений выведем: Формула коэффициента жесткости в физикеПодставив эти выражения в (2) и разделив на Формула коэффициента жесткости в физикеполучаем Формула коэффициента жесткости в физикечто и требовалось доказать.

Жёсткость некоторых деформируемых тел

Стержень постоянного сечения

Однородный стержень постоянного сечения, упруго деформируемый вдоль оси, имеет коэффициент жёсткости

Формула коэффициента жесткости в физике

Е — модуль Юнга, зависящий только от материала, из которого выполнен стержень; A — площадь поперечного сечения стержня; L — длина стержня.

Цилиндрическая витая пружина

Формула коэффициента жесткости в физике

Формула коэффициента жесткости в физике

Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости

Формула коэффициента жесткости в физике

dD — диаметр проволоки; dF — диаметр намотки (измеряемый от оси проволоки); n — число витков; G — модуль сдвига (для обычной стали G ≈ 80 ГПа, для меди

См. также

  • Закон Гука
  • Сила упругости
  • Роберт Гук
  • Модуль Юнга
  • Крутильная жёсткость

Источники и примечания

  1. Упругая деформация (рус.) . Архивировано из первоисточника 30 июня 2012.
  2. Dieter Meschede, Christian Gerthsen. Physik. — Springer, 2004. — P. 181..
  3. Bruno Assmann. Technische Mechanik: Kinematik und Kinetik. — Oldenbourg, 2004. — P. 11..
  4. Динамика, Сила упругости (рус.) . Архивировано из первоисточника 30 июня 2012.
  5. Механические свойства тел (рус.) . Архивировано из первоисточника 30 июня 2012.
Читайте также:  Акб на шуруповерт интерскол

Wikimedia Foundation . 2010 .

Смотреть что такое "Коэффициент упругости" в других словарях:

коэффициент упругости — tampros koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, atvirkščiai proporcingas tampros moduliui. atitikmenys: angl. elasticity coefficient vok. Elastizitätskoeffizient, m rus. коэффициент упругости, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

коэффициент упругости — tamprumo koeficientas statusas T sritis fizika atitikmenys: angl. elasticity coefficient vok. Elastizitätskoeffizient, m rus. коэффициент упругости, m pranc. coefficient d’élasticité, m … Fizikos terminų žodynas

КОЭФФИЦИЕНТ УПРУГОСТИ ПЛАСТА — β* σчитывающий упругое расширение жидкости, заключающейся в п., и уменьшение объема пор вследствие упругости пласта и характеризует упругий запас пластовой системы. К. у. п. определяют по формуле: βп = mβж + βп, где m… … Геологическая энциклопедия

Коэффициент упругости ар­матуры — – коэффициент, характеризующий упругопластическое состояние растянутой арматуры. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика термина: Виды… … Энциклопедия терминов, определений и пояснений строительных материалов

Коэффициент упругости бе­тона — – коэффициент, характеризующий упругопластическое состояние сжатого бетона. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика термина: Свойства бетона… … Энциклопедия терминов, определений и пояснений строительных материалов

КОЭФФИЦИЕНТ — КОЭФФИЦИЕНТ, число, на которое умножается некоторая неизвестная величина в алгебраическом выражении. В выражении 1 + 5х + 2х2 числа 5 и 2 являются коэффициентами х и х2 соответственно. В физике коэффициент это число, характеризующее определенное… … Научно-технический энциклопедический словарь

коэффициент — а, м. coefficient <, н. лат. coefficiens, ntis. 1. Мат. Множитель (числовой или буквенный) в алгебраическом выражении. Сл. 18. Надлежит же неоставить учинять делать примечании юношам при умножении алгебраическом возышение степеней. Как члены… … Исторический словарь галлицизмов русского языка

Коэффициент прочности — отношение фактического модуля упругости (прогиба) дорожной конструкции в данный момент времени к требуемому общему модулю упругости (прогибу), если дорожная одежда рассчитана по Инструкции title= Инструкция по проектированию дорожных одежд… … Словарь-справочник терминов нормативно-технической документации

Коэффициент запаса прочности — – отношение фактического модуля упругости дорожной одежды к требуемому модулю упругости, определенному по интенсивности и составу движения на период оценки фактического модуля упругости. [ГОСТ 14249 89] Рубрика термина: Асфальт Рубрики… … Энциклопедия терминов, определений и пояснений строительных материалов

Коэффициент Пуассона — µ Коэффициент пропорциональности между абсолютными значениями относительной продольной ε1у и поперечной ε2y упругомгновенными деформациями при s1 = 0,3Rпр при осевом сжатии образца Источник: ГОСТ 24452 8 … Словарь-справочник терминов нормативно-технической документации