Для чего нужны полевые транзисторы

Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называются полевыми транзисторами.

У них в создании электрического тока участвуют носители заряда только одного типа (электроны либо дырки).

Полевые транзисторы бывают двух видов:

– с управляющим p-n-переходом;
– со структурой металл-диэлектрик-полупроводник (МДП)

Транзистор с управляющим p-n-переходом представляет собой пластину (участок) из полупроводникового материала с электропроводностью p- либо n-типа, к торцам которой подсоединены электроды – сток и исток. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого выведен электрод – затвор.

Полевым транзистором называется полупроводниковый прибор, Усилитель ные свойства которого обусловлены потоком основных но­сителей, протекающим через проводящий канал, управляемый электричёским полем. Действие полевого транзистора обусловлено носителями заряда одной полярности.

Характерной особенностью полевого транзистора является высокий коэффи­циент усиления по напряжению и высо­кое входное сопротивление.
Простейший, полевой транзистор со­стоит из пластинки полупроводникового материала с одним p-n-переходом в цент­ральной части и с невыпрямляющими контактами по краям (рис 1). Действие это­го прибора основано на зависимости тол­щины области пространственного заряда (ОПЗ) p-n-перехода от приложенного к нему напряжения. Поскольку запирающий слой, почти полностью лишен подвижных носителей заряда, его проводимость близ­ка к нулю.

Таким образом, в пластинке по­лупроводника, не охваченной запирающим слоем, образуется токопроводящий канал, сечение которого зависит от толщины ОПЗ. Если включить источник питания Е2, как, показано на [рис. 6.1, то через пластинку полупроводника, между выпрямляющи­ми контактами потечет ток. Область в полупроводнике, в которой регулируется поток носителей заряда, на­зывают проводящим каналом.

Электрод полевого транзистора, через который в проводящий ка­нал втекают носители заряда, называют истоком, а электрод, через который они вытекают из канала, — стоком.

Электрод полевого транзистора, на который подается электриче­ский сигнал» используемый для управления величиной тока, проте­кающего через канал, называют затвором.

К каждому из электродов присоединяются выводы, носящие соот­ветствующие названия (истока, стока и затвора). Затвор выполняет роль сетки вакуумного триода. Исток и сток соответствуют катоду и аноду. Величина тока в канале (при Е2 и Rн = const) зависит от сопротивления участка пластинки между стоком и истоком, т. е. в зна­чительной степени от эффективной площади поперечного сечения ка­нала.
Источник E1 создает отрицательное напряжение на затворе, что приводит к увеличению толщины запирающего слоя и к уменьшению сечения канала. С уменьшением сечения канала увеличивается со­противление между истоком и стоком и снижается величина тока Iс. Уменьшение напряжения на затворе вызывает уменьшение сопротив­ления канала и возрастание тока Iс. Следовательно, ток, протекающий через канал, можно модулировать сигналами, приложенными к за­твору.

Поскольку р-n – переход включен в обратном направлении, входное сопротивление прибора очень велико.

Отрицательное напряжение, приложенное к затвору относитель­но истока, может вызвать такое расширение ОПЗ, при котором токопроводящий канал окажется перекрытым. Это напряжение называют пороговым или напряжением отсечки. Оно соответствует напряжению запирания электронной лампы.
К р-n – переходу приложено не только «поперечное» напряжение Е1 но и «про­дольное» напряжение, падающее на рас­пределенном сопротивлении канала, созда­ваемое током, протекающим от истока к стоку. Поэтому ширина ОПЗ у стока увеличивается, а эффективное сечение канала соответственно умень­шается (см. рис. 1). Приборы данного типа называют полевыми транзисторам и с затвором в виде р-n перехода или с управляющим р-n- переходом .

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.
Читайте также:  Как настроить компрессор на нужное давление

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Читайте также:  Для чего нужен крейцмейсель

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Полевые транзисторы являются полупроводниковыми приборами. Особенностью их является то, что ток выхода управляется электрическим полем и напряжением одной полярности. Регулирующий сигнал поступает на затвор и осуществляет регулировку проводимости перехода транзистора. Этим они отличаются от биполярных транзисторов, в которых сигнал возможен с разной полярностью. Другим отличительным свойством полевого транзистора является образование электрического тока основными носителями одной полярности.

Разновидности

Существует множество разных видов полевых транзисторов, действующих со своими особенностями.
  • Тип проводимости. От нее зависит полюсность напряжения управления.
  • Структура: диффузионные, сплавные, МДП, с барьером Шоттки.
  • Количество электродов: бывают транзисторы с 3-мя или 4-мя электродами. В варианте с 4-мя электродами подложка является отдельной частью, что дает возможность управлять прохождением тока по переходу.
  • Материал изготовления : наиболее популярными стали приборы на основе германия, кремния. В маркировке транзистора буква означает материал полупроводника. В транзисторах, производимых для военной техники, материал маркируется цифрами.
  • Тип применения: обозначается в справочниках, на маркировке не указан. На практике известно пять групп применения «полевиков»: в усилителях низкой и высокой частоты, в качестве электронных ключей, модуляторов, усилителей постоянного тока.
  • Интервал рабочих параметров: набор данных, при которых полевики могут работать.
  • Особенности устройства: унитроны, гридисторы, алкатроны. Все приборы имеют свои отличительные данные.
  • Количество элементов конструкции: комплементарные, сдвоенные и т. д.
Кроме основной классификации «полевиков», имеется специальная классификация, имеющая принцип действия:
  • Полевые транзисторы с р-n переходом, который осуществляет управление.
  • Полевые транзисторы с барьером Шоттки.
  • «Полевики» с изолированным затвором, которые делятся:
    — с индукционным переходом;
    — со встроенным переходом.

В научной литературе предлагается вспомогательная классификация. Там говорится, что полупроводник на основе барьера Шоттки необходимо выделить в отдельный класс, так как это отдельная структура. В один и тот же транзистор может входить сразу оксид и диэлектрик, как в транзисторе КП 305. Такие методы применяют для образования новых свойств полупроводника, либо для снижения их стоимости.

На схемах полевики имеют обозначения выводов: G – затвор, D – сток, S – исток. Подложку транзистора называют «substrate».

Конструктивные особенности

Электрод управления полевым транзистором в электронике получил название затвора. Его переход выполняют из полупроводника с любым видом проводимости. Полярность напряжения управления может быть с любым знаком. Электрическое поле определенной полярности выделяет свободные электроны до того момента, пока на переходе не закончатся свободные электроны. Это достигается воздействием электрического поля на полупроводник, после чего величина тока приближается к нулю. В этом заключается действие полевого транзистора.

Электрический ток проходит от истока к стоку. Разберем отличия этих двух выводов транзистора. Направление движения электронов не имеет значения. Полевые транзисторы обладают свойством обратимости. В радиотехнике полевые транзисторы нашли свою популярность, так как они не образуют шумов по причине униполярности носителей заряда.

Главной особенностью полевых транзисторов является значительная величина сопротивления входа. Это особенно заметно по переменному току. Эта ситуация получается по причине управления по обратному переходу Шоттки с определенным смещением, или по емкости конденсатора возле затвора.

Материалом подложки выступает нелегированный полупроводник. Для «полевиков» с переходом Шоттки вместо подложки закладывают арсенид галлия, который в чистом виде является хорошим изолятором.

К нему предъявляются требования:
  • Отсутствие отрицательных факторов в соединении с переходом, стоком и истоком: гистерезис свойств, паразитное управление, чувствительность к свету.
  • Устойчивость к температуре во время изготовления: невосприимчивость к эпитаксии, отжигу. Отсутствие различных примесей в активных слоях.
  • Минимальное количество примесей.
  • Качественная структура кристаллической решетки с наименьшим количеством дефектов.
Читайте также:  Как разобрать шуруповерт интерскол да 18эр

На практике оказывается трудным создание структурного слоя со сложным составом, отвечающим необходимым условиям. Поэтому дополнительным требованием является возможность медленного наращивания подложки до необходимых размеров.

Полевые транзисторы с р-n переходом

В такой конструкции тип проводимости затвора имеет отличия от проводимости перехода. Практически применяются различные доработки. Затвор может быть изготовлен из нескольких областей. В итоге наименьшим напряжением можно осуществлять управление прохождением тока, что повышает коэффициент усиления.

В разных схемах применяется обратный вид перехода со смещением. Чем больше смещение, тем меньше ширина перехода для прохождения тока. При определенной величине напряжения транзистор закрывается. Применение прямого смещения не рекомендуется, так как мощная цепь управления может оказать влияние на затвор. Во время открытого перехода проходит значительный ток, или повышенное напряжение. Работа в нормальном режиме создается путем правильного выбора полюсов и других свойств источника питания, а также подбором точки работы транзистора.

Во многих случаях специально применяют непосредственные токи затвора. Такой режим могут применять и транзисторы, у которых подложка образует переход вида р-n. Заряд от истока разделяется на сток и затвор. Существует область с большим коэффициентом усиления тока. Этот режим управляется затвором. Однако, при возрастании тока эти параметры резко падают.

Подобное подключение применяется в схеме частотного затворного детектора. Он применяет свойства выпрямления перехода канала и затвора. В таком случае прямое смещение равно нулю. Транзистор также управляется затворным током. В цепи стока образуется большое усиление сигнала. Напряжение для затвора изменяется по закону входа и является запирающим для затвора.

Напряжение в стоковой цепи имеет элементы:
  • Постоянная величина. Не применяется.
  • Сигнал несущей частоты. Отводится на заземление с применением фильтров.
  • Сигнал с модулирующей частотой. Подвергается обработке для получения из него информации.

В качестве недостатка затворного детектора целесообразно выделить значительный коэффициент искажений. Результаты для него отрицательные для сильных и слабых сигналов. Немного лучший итог показывает фазовый детектор, выполненный на транзисторе с двумя затворами. Опорный сигнал подается на один их электродов управления, а информационный сигнал, усиленный «полевиком», появляется на стоке.

Несмотря на значительные искажения, этот эффект имеет свое назначение. В избирательных усилителях, которые пропускают определенную дозу некоторого спектра частот. Гармонические колебания фильтруются и не влияют на качество действия схемы.

Транзисторы МеП, что означает – металл-полупроводник, с переходом Шоттки практически не отличаются от транзисторов с р-n переходом. Так как переход МеП имеет особые свойства, эти транзисторы могут функционировать на повышенной частоте. А также, структура МеП простая в изготовлении. Характеристики по частоте зависят от времени заряда затворного элемента.

МДП-транзисторы

База элементов полупроводников постоянно расширяется. Каждая новая разработка изменяет электронные системы. На их базе появляются новые приборы и устройства. МДП-транзистор действует путем изменения проводимости полупроводникового слоя с помощью электрического поля. От этого и появилось название – полевой.

Обозначение МДП расшифровывается как металл-диэлектрик-полупроводник. Это дает характеристику состава прибора. Затвор изолирован от истока и стока тонким диэлектриком. МДП транзистор современного вида имеет размер затвора 0,6 мкм, через который может протекать только электромагнитное поле. Оно оказывает влияние на состояние полупроводника.

При возникновении нужного потенциала на затворе возникает электромагнитное поле, которое оказывает влияние на сопротивление участка стока-истока.

Достоинствами такого применения прибора является:
  • Повышенное сопротивление входа прибора. Это свойство актуально для применения в цепях со слабым током.
  • Небольшая емкость участка сток-исток дает возможность применять МДП-транзистор в устройствах высокой частоты. При передаче сигнала искажений не наблюдается.
  • Прогресс в новых технологиях производства полупроводников привел к разработке транзисторов IGBT, которые включают в себя положительные моменты биполярных и полевых приборов. Силовые модули на их основе широко применяются в приборах плавного запуска и преобразователях частоты.

При разработке таких элементов нужно учесть, что МДП-транзисторы имеют большую чувствительность к повышенному напряжению и статическому электричеству. Транзистор может сгореть при касании к его выводам управления. Следовательно, при их установке необходимо применять специальное заземление.

Такие полевые транзисторы обладают многими уникальными свойствами (например, управление электрическим полем), поэтому они популярны в составе электронной аппаратуры. Также следует отметить, что технологии изготовления транзисторов постоянно обновляется.