Что представляет собой биполярный транзистор

Биполярный транзистор – это электрический полупроводниковый прибор, служащий для усиления сигнала и ряда прочих целей, в котором ток образуется движением носителей обоих знаков. В нынешнем виде изделие предложено и запатентовано в 1947 году Уильямом Шокли.

История разработки первых транзисторов

Склонности передаются по наследству, это видно на примере Уильяма Брэдфорда Шокли. Сын горного инженера и одной из первых в США женщины-геодезиста. Специфичное сочетание. В 22 года получил степень бакалавра, не остановился на достигнутом, и в 1936-м становится доктором философии. Звание, присуждённое Массачусетским институтом технологии, не означает, что Шокли изучал Ницше и Аристотеля. Степень говорит о наличии диссертации в области из большого перечня наук. Диковинное название – дань традиции, когда философия в средние века занималась широким спектром вопросов, по праву считаясь прародителем прочих направлений хода учёной мысли.

Что представляет собой биполярный транзистор

Смысл работы состоял в исследовании электронных уровней хлорида натрия. Зонная теория, объяснявшая процессы, происходившие в материалах, как раз набирала популярность. Согласно воззрениям теории, любой электрон в кристалле способен занимать уникальное, свойственное исключительно указанной частице, состояние с определённой энергией и направлением спина. Сообразно представлению градации идут с некоторой дискретностью в валентной зоне (связанные с ядром), вдобавок присутствует запрещённая область, где частицы располагаться не вправе. Из последнего тезиса исключением считаются примесные полупроводники, ставшие базисом для создания твердотельной электроники, включая биполярные транзисторы.

В Лаборатории Белла Шокли попал за любопытные идеи в области конструирования ядерных реакторов. Уран в чистом виде открыт задолго до этого, впервые на примере элемента Беккерель обнаружил радиоактивность. Бомбардировать нейтронами ядра металла пробовал в начале 30-х годов (XX века) Энрико Ферми, преследовалась цель – получить трансурановые элементы. Позднее оказалось доказано, что одновременно происходит радиоактивный распад с выделением вовне энергии. Шокли задумал бомбардировать U-235, чтобы получить новый источник большой мощности. В ходе Второй мировой войны занимался исследования по оценке возможного сухопутного вторжения Японии, собранные данные во многом способствовали решению Трумэна сбросить атомную бомбу на Хиросиму.

Лаборатория Белла поставила перед Шокли прямую задачу – отыскать альтернативу громоздким ламповым усилителям. Это означало бы экономию места и появление на свет нового поколения приборов, способных функционировать в условиях войны. Не секрет, что боевые заслуги СССР оказались по достоинству оценены на противоположной стороне океана. Шокли назначили менеджером бригады, бившейся над задачей, куда среди прочего входили создатели первого точечного транзистора:

  1. Джон Бардин;
  2. Уолтер Хаузер Браттейн.

Читатели уже знают про точечный диод на базе кристаллического детектора, но что представлял транзистор? Это полевой прибор: два электрода приложены к области полупроводника p-типа и разделены диэлектрическим клином. Толщина запирающего слоя варьируется с базы. Управляющий электрод, приложенный к n-области под положительным потенциалом сильно обедняет область перехода, и ток не течёт. Исторически первым транзистором считается полевой.

Конструкция оказалась специфичной. К примеру, контактные площадки из золота прижаты пружиной к германиевому кристаллу p-n-перехода, больше напоминают лабораторную установку, нежели полнофункциональный прибор для военной техники. Собрано — при помощи канцелярских скрепок и ядовитого клея-электролита. Но прибор в будущем даст название Силиконовой Долине. Между учёными произошёл раздор, потому что теория поля Шокли, применяемая в транзисторе, не помогла созданию прибора, вдобавок упоминалась в канадском патенте Лилиенфельда 1925 года. В результате Лаборатория Белла выкидывает имя Уильяма из списка создателей при оформлении бумаг.

Примечательно, что структура MESFET (полевой транзистор), предложенная Лилиенфельдом, не функционировала. Но заложенные идеи в бюро приняли, и у Лаборатории Белла возникли сложности с подачей заявок. Парадокс, но учёные могли запатентовать лишь дизайн Бардина и Браттейна – ничего более. Остальное давно уже существовало в виде концепции на момент 1946 года. Шокли решил, что судьба сыграла с изобретателем очередную шутку после всех неудач. Однако компания Белла идёт на всяческие уступки, и общепринято, что Уильям фигурирует для прессы в качестве первого лица.

Что представляет собой биполярный транзистор

Уильям Брэдфорд Шокли

Шокли начинает трудиться над собственным направлением, попутно пытаясь исправить ситуацию. Последнее не даёт положительных результатов, зато первое приводит к созданию прибора, сегодня известного миру под именем биполярного транзистора. Перебирая ряд конструкций, 1 января 1948 года находит правильную, но не сразу осознает. Впоследствии к Шокли приходит идея, что ток образуется не только основными носителями заряда.

Принцип действия биполярного транзистора, температурные режимы

Изложенная Шокли концепция приводит коллектив в неистовство: годами работал за спиной коллег! Но идея оказалась удачной. Если толщина полупроводника базы мала, инжектированные неосновные носители заряда частично захватываются полем коллектора. Там они уже становятся основными, участвуют в создании электрического тока. Процесс управляется полем базы, количество прорвавшихся носителей заряда пропорционально приложенному напряжению.

Фактически p-n-переход коллектора работает в режиме пробоя. Температурные режимы целиком определяются материалами. Германиевые транзисторы не способны функционировать при температуре выше 85 градусов Цельсия, причём единожды превысив справочное значение, последующим охлаждением прибору не вернёшь работоспособности. Кремний выдерживает нагрев почти вдвое больший. Нередки экземпляры транзисторов, способные функционировать при 150 градусах Цельсия, но минус в сравнительно большом падении напряжения на p-n-переходе.

Что представляет собой биполярный транзистор

Выходит, конструктор подыскивает для создания электрической схемы наиболее подходящие транзисторы согласно имеющимся условиям. Проводится расчёт рассеиваемой мощности, при необходимости элементы дополняются массивными радиаторами. Предельная температура подбирается с изрядным запасом, чтобы исключить перегрев. Полупроводники обладают явным сопротивлением, используются в технике исключительно для решения специфических задач. К примеру, при создании p-n-перехода. В остальном, чем толще слой материала, тем большие возникают потери на активном омическом сопротивлении. Приведём наглядный пример: удельное сопротивление германия превышает значение аналогичного параметра меди (металл) в 30 млн. раз. Следовательно, потери вырастут (и нагрев) сообразно указанной цифре.

Итак, слой полупроводника мал. Как это реализовать на практике? Забудем временно про канцелярские скрепки, использованные в первой конструкции, обратимся к современной технологии. При изготовлении биполярного транзистора выдерживаются закономерности:

  • Материал эмиттера служит для инжектирования основных носителей в базу, где они окажутся захвачены полем. Поэтому используются полупроводники с большой удельной долей примесей. Этим обеспечивается создание большого количества свободных носителей (дырок или электронов). Объем коллектора чуть выше, нежели у эмиттера, мощность рассеивания предполагается больше. Это влияет на условия охлаждения прибора.
  • В базе концентрация примесей меньше, чтобы большая часть инжектированного потока не рекомбинировала. Доля сторонних атомов в кристаллической решётке минимальная.
  • Коллектор по доле примесей располагается посередине между базой и эмиттером. Прорвавшиеся сюда носители заряда обязаны рекомбинировать. Различие в концентрациях примесей становится причиной, почему нельзя коллектор и эмиттер в электрической схеме прибора поменять местами. Второй причиной считается факт, что площади p-n-переходов неодинаковы. Со стороны коллектора – больше.
Читайте также:  Монтаж фотореле для уличного освещения

Что представляет собой биполярный транзистор

От доли примеси зависит ширина запирающего слоя p-n-перехода (с увеличением растёт). Причём проникновение его в эмиттер, коллектор и базу неодинаково. На минимальную глубину запирающий слой простирается в материал с максимальной долей примесей. То есть, эмиттер. Германиевые биполярные транзисторы уходят в прошлое, на замену приходят кремниевые и на основе арсенида галлия. Сегодня доминируют две технологии производства полупроводниковых приборов, выделяют:

  1. Сплавные транзисторы производятся, к примеру, вплавлением в тонкую пластинку германия (по большей части изготавливаются из указанного материала) двух капель индия различных по величине. Материалы показывают различную температуру ликвидуса, становится возможен процесс обработки в печах. За счёт диффузии атомов индий прочно вплавляется в германий (температура плавления 940 градусов Цельсия). Потом к эмиттеру, коллектору и базе припаиваются электроды.
  2. Планарные транзисторы наиболее близки к первоначальной идее Шокли, его приборы как раз назвали плоскими. В отличие от известных прежде. На плоскую подложку разнообразными методами наносятся нужные слои. Активно применяются маски различных конфигураций для создания рисунков. Преимущество в возможности массового изготовления транзисторов на единой подложке, потом она нарезается кусками, каждый становится обособленным полупроводниковым прибором.

В ходе описанных выше технологических манипуляций активно используются ступени производственного цикла:

  1. Метод диффузии позволяет точно контролировать геометрические размеры p-n-перехода, что обусловливает лучшую повторяемость характеристик и точность. Для создания транзистора полупроводник в атмосфере «благородного» газа нагревается до точки ликвидуса, парящие вокруг примеси легко оседают на поверхности. Происходит диффузия. Дозировкой парциального давления паров примесей и продолжительности операции варьируется глубина проникновения атомов в основной материал (подложку). Иногда диффузия возникает в процессе сплавления. Момент определяется точным подбором температурного режима.
  2. Эпитаксией называют процесс роста кристалла нужного типа на подложке. Осаждение может происходить из раствора или газа. К этому классу технологий относится и вакуумное напыление, электролиз стоит чуть обособленно, основанный на принципе наращивания слоёв под действием тока.
  3. Для получения заданной маски часто применяют методики литографии. К примеру, на подложку наносится фоторезист, островки которого исчезают под действием проявителя. Формирующее излучение фильтруется маской из непрозрачного материала. Процесс фотолитографии напоминает знакомый каждому профессиональному фотографу, самостоятельно ведущему обработку плёнки.

В справочниках часто указываются два и более ключевых термина, характеризующих производственный цикл биполярного транзистора.

Что представляет собой биполярный транзистор

Система обозначений транзисторов

На полупроводниковые приборы выпущен ОСТ 11-0948, устанавливающий нормы и для биполярных транзисторов. На первом месте указывается материал, определяющий во многом температурные режимы работы и параметры, потом цифровая маркировка, определяющая мощность, частоту и прочие качества биполярного транзистора. Среди основных параметров в справочниках фигурируют вольт-амперная характеристика и коэффициент усиления по току.

Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n — p — n ; по мощности: малая (Р мах 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Что представляет собой биполярный транзистор

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние — с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n — перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером — это область транзистора для инжекции носителей заряда в базу. Коллектором — область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Что представляет собой биполярный транзистор

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Читайте также:  Для чего ставят дифавтомат

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Что представляет собой биполярный транзистор

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

Входной характеристикой является зависимость:

I Э = f ( U ЭБ) при U КБ = const (а).

Выходной характеристикой является зависимость:

I К = f ( U КБ) при I Э = const (б).

Что представляет собой биполярный транзистор

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f ( U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f ( U КЭ) при I Б = const (а).

Что представляет собой биполярный транзистор

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n — перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n — перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы — усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Что представляет собой биполярный транзистор

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

Что представляет собой биполярный транзистор

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Читайте также:  Винт под внутренний шестигранник

Посчитаем Ibmax и Ibmin с помощью закона Ома:

Что представляет собой биполярный транзистор

2. Расчет выходного тока коллектора iс

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

Что представляет собой биполярный транзистор

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Что представляет собой биполярный транзистор

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

Что представляет собой биполярный транзистор

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Что представляет собой биполярный транзистор

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

Режим отсечки (cut off mode).

Активный режим (active mode).

Режим насыщения (saturation mode).

Инверсный ражим (reverse mode ).

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначаетсяβ, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.