Что относится к полимерным материалам

Полимерными называют материалы, в состав которых в качестве основного компонента входят высокомолекулярные органические вяжущие вещества (полимеры).

Благодаря способности в процессе переработки принимать требуемую форму и сохранять ее после снятия действующих усилий полимерные материалы называют также пластическими массами (пластмассами или пластиками). Пластмассы, применяемые в строительстве, представляют собой сложные композиции, состоящие из полимерного связующего, наполнителей, стабилизаторов, пластификаторов, отвердителей и других компонентов.

Полимеры (от греческого «поли» – много, «мерос» – часть, доля) – это высокомолекулярные вещества, молекулы которых состоят из большого количества звеньев одинаковой структуры, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул.

По составу основной цепи макромолекул полимеры разделяют на три группы: а) карбоцепные полимеры – макромолекулярные цепи полимера состоят лишь из атомов углерода; б) гетероцепные полимеры, в состав цепей которых входят кроме атомов углерода еще атомы кислорода или серы, азота, фосфора и т.п.; в) элементоорганические полимеры, в основные цепи которых могут входить атомы кремния, алюминия, титана и других элементов, имеющие кремнийкислородные, силоксановые связи.

Полимеры могут иметь линейное, разветвленное или сетчатое (трехмерное) строение, что определяет физико-механические и химические свойства полимеров. Макромолекулы полимеров линейного строения вытянуты в виде цепей, связанных между собой слабыми силами межмолекулярного взаимодействия (рис. 9а). Для разветвленных полимеров характерно наличие мономерных звеньев, ответвленных от основной цепи макромолекулы (рис. 9б). Сетчатые (трехмерные) структуры полимеров характеризуются тем, что прочные химические связи между цепями («сшивка» отдельных линейных или разветвленных цепей полимера) приводят к образованию единого пространственного каркаса (рис. 9в).

Полимеры с макромолекулами линейного или разветвленного строения плавятся при нагревании с изменением свойств и растворяются в соответствующем органическом растворителе, а при охлаждении вновь затвердевают. Такие полимеры, способные многократно размягчаться при нагревании и затвердевать при охлаждении, называются термопластичными (термопласты). Напротив, полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются в растворителях, а лишь набухают. Такие полимеры не могут обратимо размягчаться при повторном нагревании и носят название термореактивных полимеров (реактопласты).

Высокомолекуляр­ные соединения характеризуются не только структурой молекул, но и моле­кулярной массой. Полимеры обычно имеют молекулярную массу свыше 5000 единиц; высокомолекуляр­ные соединения с меньшей молекулярной массой называют олигомерами. По мере увеличения молекулярной массы полимера растворимость его в органических раствори­телях снижается, несколько снижается эластичность, однако прочность зна­чительно возрастает.

Свойства многих полимеров неразрывно связаны с величиной молеку­лярной массы и межмолекулярных сил, которые слабее обычных валентных связей. При увеличении молекулярной массы полимера суммарный эффект межмолекулярных сил становится ощутимым, поскольку их источником яв­ляется каждый атом. В этой связи возрастающая роль межмолекулярных сил при повышении молекулярной массы качественно отличает полимеры от низкомолекулярных соединений.

Что относится к полимерным материалам

Рис. 9. Схематическое строение макромолекул полимеров с линейной (а), разветвленной (б), сетчатой (в) структурой

Для производства полимеров основным сырьем служат мономеры, т.е. вещества, способные соединяться друг с другом, образуя полимеры. Моно­меры получают путем переработки природных и нефтяных газов, каменного угля, аммиака, углекислоты и других подобных веществ. В зависимости от метода получения полимеры подразделяются на полимеризационные, поликонденсационные и модифицированные природные.

Полимеризационныеполимеры получают в процессе полимеризации мономеров вследствие раскрытия кратных связей (или раскрытия цикла) и соединения элементарных звеньев мономера в длинные цепи. Поскольку при реакции полимеризации атомы и их группировки не отщепляются, побочные продукты не образуются, химический состав мономера и полимера одинаков.

Поликонденсационныеполимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. При этой реакции наряду с основным продуктом поликонденсации образуются побочные соединения (вода, спирты и другие), а химический состав полимера отлича­ется от химического состава исходных продуктов поликонденсации.

Модифицированныеполимеры получают из природных высокомолеку­лярных веществ (целлюлоза, казеин) путем их химической модифи­кации для изменения их первоначальных свойств в заданном направлении. Из ацетилцеллюлозы вырабатывают прочные и водостойкие лаки для окрашивания древесины и металла.

К полимеризационным полимерам (термопластам) относятся полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, полиметилметакрилат (органическое стекло), поливинилацетат и др. Полиэтилен [-СН2-СН2-]п – продукт полимеризации этилена. Выпускается в виде гранул размером 3 – 4 мм или белого порошка. Технические свойства полиэтилена зависят от молекулярной мас­сы, разветвленности цепи и степени кристалличности. Полиэтилен один из самых легких полимеров – его плотность меньше плотности воды (0,92-0,97 г/см 3 ). Характеризуется высоким пределом прочности при растяжении (12-32 МПа), незначительным водопоглощением (0,03-0,04 %), высокой химической стойкостью и морозостойкостью. Сле­дует учитывать особенности полиэтилена, свойственные всем полимерам с линей­ной структурой: сравнительно низкий модуль упругости (150-800 МПа), малую твердость, ограниченную теплостойкость (108-130 °С), большой коэффициент теплового расширения. Полиэтилен применяется для производства труб, пленок, теплоизоляционных газонаполненных материалов, тары и сантехнического оборудования.

Поливинилхлорид (ПВХ) является продуктом полимеризации винилхлорида (СH2=CHCl). Высокие механические свойства поливинилхлорида определили главные области его применения в строительстве. Из поливинилхлорида изготовляют гидро­изоляционные и отделочные материалы, плинтуса, поручни, оконные и дверные переплеты, линолеум и др. Ценным свой­ством поливинилхлорида является стойкость к действию кислот, ще­лочей, спирта, бензина, смазочных масел. Поэтому его широко при­меняют для производства труб, используемых в системах водоснаб­жения, канализации и технологических трубопроводов.

Недостатками поливинилхлорида является резкое понижение прочности при повышении температуры, а также ползучесть при дли­тельном действии нагрузки.

Полистирол [-СН2-СНС6Н5-]п – твердый продукт полимеризации стирола (винилбензола). При обычной температуре полистирол представляет собой твердый прозрачный материал, похожий на стек­ло, пропускающий до 90 % видимой части спектра. Выпускают поли­стирол в виде гранул (6-10 мм), мелкого и крупнозернистого порошка, а также в виде бисера (при суспензионном методе производства) с влажностью до 0,2 %.

Полистирол обладает высокими механическими свойствами (предел прочности на сжатие 80-110 МПа), водостоек, хорошо сопротивляется действию концентрированных кислот (кроме азотной и ледяной ук­сусной кислот), противостоит растворам щелочей (с концентрацией до 40 %). К недостаткам полистирола, ограничивающим его применение, относятся: невысо­кая теплостойкость, хрупкость, проявляющаяся при ударной нагруз­ке.

Применяют для изготовления гидроизоляционных пленок, облицовочных плиток, теплоизоляционных материалов, водопроводных труб и др.

Среди поликонденсационных полимеров (реактопластов) наиболее значимыми являются фенолформальдегидные, карбамидные (мочевиноформальдегидные), эпоксидные, кремнийорганические полимеры, полиуретаны и др. Фенолформальдегидные полимеры получают путем поликонденсации фенола с формальдегидом. Эти полимеры хорошо совмещаются с на­полнителями — древесной стружкой, бумагой, тканью, стеклянным волокном, при этом получаются пластики более прочные и менее хрупкие, чем сами полимеры. Поэтому фенолформальдегидные по­лимеры широко применяют в качестве связующего при изготовлении древесностружечных плит, бумажнослоистых пластиков, стеклопла­стиков и разнообразных изделий из минеральной ваты. Кроме того, они используются для производства клеев, водостойкой фанеры, спиртовых лаков.

Макромолекулы кремнийорганических полимеров состоят из чередующихся атомов кремния и кислорода, а углерод входит лишь в состав групп, обрамляющих главную цепь СН3. Наличие силоксановой связи придает свойства, присущие силикатным материалам (прочность, твердость, теплостойкость), а углеводородистых радикалов СН3 – органическим поли­мерам (эластичность и др.).

Полимеры характеризуются следующими техническими свойствами: термическими (температурой размягчения и теплостойкостью, температурой стеклования и те­кучестью), механическими (прочностью, деформативностью и поверх­ностной твердостью), химическими (атмосферостойкостью и сопротивляемостью деструкции).

В целом, наряду с положительными свойствами полимеров – малой средней плотностью (около 1 г/см 3 ), низкой теплопроводностью, водо- и газонепроницаемостью, химической стойкостью, высоким коэффициентом конструктивного качества, практически неограниченной сырьевой базой и др. – они обладают и рядом недостатков. К ним относятся: низкая теплостойкость, невысокий модуль упругости, значительная ползучесть, склонность к старению, что в итоге определяет недостаточную долговечность. Кроме того, необходимо учитывать горючесть и определенную токсичность полимеров. Так, при получении многих полимерных материалов используются в качестве связующего фенолформальдегидные смолы, содержащие до 9 % свободного фенола, до 11 % свободного формальдегида и 1,5-2,0 % метанола. В процессе производства и эксплуатации изделий значительная часть этих высокотоксичных веществ выделяется в воздух. Пенополистирол при обычных условиях эксплуатации (и особенно при горении) выделяет высокотоксичный стирол. Пенополиуретановые теплоизоляционные материалы при горении образуют множество летучих высокотоксичных соединений, включая синильную кислоту.

Наполнителив пластических массах, снижая расход полимера, удешевляют пластмассы. Кроме того, структурируя полимерное связующее, они улучшают ряд технических свойств пластмасс: прочность, твердость, термостойкость, сопротивляемость усадке и ползучести и др.

Наполнители в зависимости от химической природы разделяют на органические и неорганические; в зависимости от формы и структуры – порошкообразные и волокнистые. В производстве полимерных композиционных материалов широко применяются органические и неорганические порошкообразные наполнители (древесная мука, отход целлюлозного производства – лигнин, микрослюда, кварцевая мука, тальк и т.д.).

Волокнистыми наполнителями служат целлюлозное, асбестовое и стеклянное, а также синтетические (из капрона, нейлона, лавсана и др.) волокна.

Добавочные вещества. Введение пластификаторов (эфиры алифатических и ароматических кислот и алифатических спиртов, эфиры гликолей и эфиры фосфорной кислоты, эпоксидированные и хлорированные соединения) позволяет улучшить условия переработки полимерных композиций, снизить их хрупкость. Добавки-стабилизаторы (антиоксиданты, термо- и светостабилизаторы) способствуют длительному сохранению свойств пластмасс в процессе их эксплуатации. Отвердители (сшивающие и вулканизующие агенты) обеспечивают процесс отверждения полимеров (формирование их пространственной структуры). Для получения окрашенных пластмасс используют пигменты. Стойкость пластмасс против возгорания повышают антипирены. Создание газонаполненных (ячеистых) пластмасс достигается с помощью порообразователей.

Читайте также:  Фрезерный станок нгф 110ш4

Все многообразие пластмасс в зависимости от назначения их в строительстве сводится к группам: конструкционным, кровельным, гидроизоляционным и герметизирующим; тепло- и звукоизоляционным; отделочным (покрытия полов и стен, лаки, краски, клеи и т.п.) материалам, а также материалам для инженерных коммуникаций. Основными конструкционными материалами на основе полимеров являются полимербетоны. К конструкционно-отделочным материалам относятся стеклопластики, бумажно-слоистые, угольные и другие пластики; древесноволокнистые и древесностружечные плиты (которые могут являться также конструкционно-теплоизоляционными материалами).

Полимербетоны– композиционные материалы, изготовляемые преимущественно на основе термореактивных полимеров: поли­эфирных, эпоксидных, фенолоформальдегидных, фурановых и др. Заполнители выбираются в зависимости от вида агрессивной среды эксплуатации. Для кислых сред получают полимербетоны на кислотостойких за­полнителях – кварцевом песке и щебне из кварцита, базальта или гра­нита. Используют также бой кислотоупорного кирпича, кокс, антра­цит, графит. Наиболее высокие физико-механические свойства полимербетоны имеют на эпоксидных смолах. Для уменьшения расхода и стоимости эпоксидных смол их модифицируют каменноугольной смолой (до 35-50 %). Широкое распространение получили полимербетоны на фурановых полимерах, которые модифицируют эпоксидны­ми смолами для улучшения свойств композиций.

Расход связующего составляет 100-200 кг на 1 м 3 полимербетона при соотношении полимера к наполнителю 1:5-1:12 по массе. Технология при­готовления и уплотнения полимербетонов такая же, как и цементных. Термообработка при 40-80 °С значительно ускоряет процесс тверде­ния. Полимербетоны (полимеррастворы) хорошо склеиваются с це­ментным бетоном, поэтому их применяют для ремонта железобетон­ных конструкций. Для уменьшения хрупкости полимербетона применяют волок­нистые наполнители – асбест, стекловолокно и др. Полимербетоны отличаются от обычного цементного бетона не только химической стойкостью (особенно по отношению к кислотам), но и высокими показателями прочности, в особенности при растяжении (7-20 МПа) и изгибе (16-40 МПа). Прочность при сжатии достигает 60-120 МПа. Морозостойкость полимербетонов может иметь 200-300 и более циклов за­мораживания и оттаивания; теплостойкость 100-200 °С (до 300 °С). Но их стои­мость в несколько раз выше цементных бетонов.

Применяют полимербетоны для химически стойких конструкций, износостойких покрытий, там, где высокая стоимость полимербето­нов будет оправдана. Отрицательными свойствами полимербетонов яв­ляются их большая ползучесть и старение, усиливающееся при действии попеременного нагревания и охлаждения. Не­обходимо соблюдение специальных правил охраны труда при работе с полимерами и кислыми отвердителями, могущими вызвать ожоги. В частности необходимы хорошая вентиляция, обеспечение рабочих защитными очками, резиновыми рукавицами, спецодеждой.

Стеклопластики – это композиционные листовые материалы, из­готовляемые из стеклянных волокон или тканей, связанных по­лимером. Связующим веществом в стеклопластиках обычно служат феноло-формальдегидные, полиэфирные и эпоксидные полимеры. Выпускают три разновидности стеклопластиков: на основе ориен­тированных волокон, рубленых волокон и тканей или матов. Стеклопластики с ориентированными волокнами (типа СВАМ – стекловолокнистого анизотропного материала) обладают большой прочностью (при растяжении до 1000 МПа), легкостью (их плотность 1,8-2 г/см 3 ), что в сочетании с химической стойкостью делает их эф­фективным материалом для строительных конструкций, емкостей и труб. Стеклопластики с рубленым стеклянным волокном изготовляют в виде волокнистых или плоских листов на полиэфирном связующем, обладающим светопрозрачностью. Эти изделия применяют для уст­ройства кровель, ограждений балконов, лоджий и перегородок. Стеклопластики, изготовляемые на основе стеклянной ткани (стеклотекстолиты), получают горячим прессованием полотнищ ткани, пропитанной термореактивным полимером, при высоком дав­лении и температуре. Стеклотекстолит идет для наружных слоев трехслойных стеновых панелей. Этот же материал применяют для ус­тройства оболочек и других строительных конструкций. Стеклотекстолиты получают также прессованием пастообразной массы из полиэфирного полимера, стекловолокна, асбеста и порош­кообразного наполнителя. Из этого материала формуют оконные и дверные блоки, фурнитуру, санитарно-технические изделия.

Бумажно-слоистые пластикиизготовляют из нескольких слоев специальной бумаги, пропитанных фенолоформальдегидным или карбамидным полимером. Пластик выпускают в виде листов длиной 1000-3000 мм, шириной 600-1600 мм, толщиной 1-5 мм. Бумажно-слоистые пластики разнообразны по цвету и рисунку, хорошо обраба­тываются – их можно пилить, сверлить. Пластик тол­щиной до 1,6 мм крепят битумно-каучуковыми и другими мастиками, эпоксидными и резорциноформальдегидными клеями. Более толстые листы пластика крепят механическим способом.

Что относится к полимерным материаламПолимеры, или макромолекулы — это очень большие молекулы, образованные связями многих молекул малого размера, которые называются составными звеньями, или мономерами. Молекулы настолько велики, что их свойства не изменяются существенным образом при добавлении или удалении нескольких таких составных звеньев. Термин "полимерные материалы" является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность — полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ — мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.

Пластмассы могут быть разделены на две основные группы — термопластические и термореактивные. Термопластические — это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен (члены семейства полиолефинов), полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.

Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные присоединением к поликонденсацией. Полимеры, полученные присоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол — это полимеры присоединения.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Реакция полимеризации — это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта — полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей. Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву п. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Полимеризация — это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Наиболее распространенными полимерами углеводородной природы являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена: Полипропилен получают стереоспецифической полимеризацией пропилена (пропена). Стереоспецифическая полимеризация — это процесс получения полимера со строго упорядоченным пространственным строением. К полимеризации способны многие другие соединения — производные этилена, имеющие общую формулу СН2==СН-X, где Х — различные атомы или группы атомов.

Что относится к полимерным материаламПолиолефины — это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n ) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущем полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.

Читайте также:  Оборудование для производства малый бизнес

Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.

Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа. Полиэтилен

Около 60% всех пластиков, используемых для упаковки- это полиэтилен, главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения. Полиэтилен высокой плотности (ПЭНД — низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена. -(CH2CH2)n- полиэтилен высокой плотности. Полиэтилен низкой плотности (ПЭВД — высокого давления) имеют ту же химическую формулу, но отличается тем, что его структура разветвленная. -(CH2CHR) n- полиэтилен низкой плотности Где R может быть -H, -(CH2)nCH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД — полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность — довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД — полиэтилен низкого давления. Пленка из ПЭНД — жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию — высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД — это прекрасная преграда влаге. Стойки к жирам, маслам. "Шуршащий" пакет-майка ("шуршавчик"), в который вы упаковываете покупки, изготовлен именно из ПЭНД.

Существует два основных типа ПЭНД. Более "старый" тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную встречаемость реакций по цепному механизму, которые приводят к образованию разветвления, как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более "молодого" типа ПЭВД. При комнатной температуры полиэтилен — довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100 °С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки- это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В его естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность. Один недостаток использования ПЭНД в некоторых из областей применения- его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней срды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД- это наиболее широко применяемый упаковочный полимер, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Это предпочитаемый материал для пленок и сумок, из-за его низкой стоимости. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

ПП — полипропилен. Прекрасная прозрачность (при быстром охлаждении в процессе формообразования), высокая температура плавления, химическая и водостойкость. ПП пропускает водяные пары, что делает его незаменимым для "противозапотевающей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

ПВХ — поливинилхлорид. В чистом виде применяется редко из-за хрупкости и неэлостичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора — диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Что относится к полимерным материаламУ потребителей полимерных пленок очень часто возникает практическая задача по распознаванию природы полимерных материалов, из которых они изготовлены. Основные свойства полимерных материалов, как хорошо известно, определяются составом и структурой их макромолекулярных цепей. Отсюда ясно, что для идентификации полимерных пленок в первом приближении может быть достаточной оценка функциональных групп, входящих в состав макромолекул. Некоторые полимеры благодаря наличию гидроксильных групп (-ОН) тяготеют к молекулам воды. Это объясняет высокую гигроскопичность, например, целлюлозных пленок и заметное изменение их эксплуатационных характеристик при увлажнении. В других полимерах (полиэтилентерефталат, полиэтилены, полипропилен и т.п.) такие группы отсутствуют вообще, что объясняет их достаточно хорошую водостойкость.

Наличие тех или иных функциональных групп в полимере может быть определено на основе существующих и научно обоснованных инструментальных методов исследования. Однако, практическая реализация этих методов всегда сопряжена с относительно большими временными затратами и обусловлена наличием соответствующих видов достаточно дорогостоящей испытательной аппаратуры, требующей соответствующей квалификации для ее использования. Вместе с тем, существуют достаточно простые и "быстрые" практические способы распознавания природы полимерных пленок. Эти способы основаны на том, что полимерные пленки из различных полимерных материалов отличаются друг от друга по своим внешним признакам, физико-механическим свойствам, а также по отношению к нагреванию, характеру их горения и растворимости в органических и неорганических растворителях.

Во многих случаях природу полимерных материалов, из которых изготовлены полимерные пленки, можно установить по внешним признакам, при изучении которых особое внимание следует обратить на следующие особенности: состояние поверхности, цвет, блеск, прозрачность, жесткость и эластичность, стойкость к раздиру и др. Например, неориентированные пленки из полиэтиленов, полипропилена и поливинилхлорида легко растягиваются. Пленки из полиамида, ацетата целлюлозы, полистирола, ориентированных полиэтиленов, полипропилена, поливинилхлорида растягиваются плохо. Пленки из ацетата целлюлозы нестойки к раздиру, легко расщепляются в направлении, перпендикулярном их ориентации, а также шуршат при их сминании. Более стойкие к раздиру полиамидные и лавсановые (полиэтилентерефталатные) пленки, которые также шуршат при сминании. В то же время пленки из полиэтилена низкой плотности, пластифицированного поливинилхлорида не шуршат при сминании и обладают высокой стойкостью к раздиру. Результаты изучения внешних признаков исследуемой полимерной пленки следует сравнить с характерными признаками, приведенными в табл. 1, после чего уже можно сделать некоторые предварительные выводы.

Что относится к полимерным материалам

Основные понятия и определения

Автор этой статьи академик Виктор Александрович Кабанов — выдающийся ученый в области химии высокомолекулярных соединений, ученик и преемник акадtvbrf В.А. Каргина, одного из мировых лидеров науки о полимерах, создателя крупной научной школы, автора большого количества работ, книг и учебных пособий.

Полимеры (от греч. polymeres — состоящий из многих частей, многообразный) — это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

Атомы или атомные группы могут располагаться в макромолекуле в виде:

  • открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
  • цепи с разветвлением (разветвленные полимеры, например амилопектин);
  • трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы).
Читайте также:  Как соединить алюминиевые провода с медными

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Что такое сополимеры
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

Гетероцепные и гомоцепные полимеры

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки; способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С.

Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта.

Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С º N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка. Термин «полимерия» был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. «Истинные» синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию полимера. (до сих пор полимеры часто называли «смолами»). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Литература .: Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В., Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., Физическая химия полимеров, пер. с англ., М., 1965.