Что называется классом точности средства измерений

Класс точности — обобщённая характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений.

Погрешность может нормироваться, в частности, по отношению к:

  • результату измерения (по относительной погрешности)

в этом случае, по ГОСТ 8.401-80 (взамен ГОСТ 13600-68), цифровое обозначение класса точности (в процентах) заключается в кружок.

  • длине (верхнему пределу) шкалы прибора (по приведенной погрешности).

Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0—30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В.

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1—0,5 В.

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Следует иметь в виду, что понятие класса точности встречается в различных областях техники. Так, в станкостроении имеется понятие класса точности металлорежущего станка, класса точности электроэрозионных станков (по ГОСТ 20551).

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

Аппараты с классом точности 0,5 (0,2) проходят метрологические испытания с 5 % загрузки, а 0,5s (0,2s) уже с 1 % загрузки. [1]

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Читайте также:  Как определить что аккумулятор замкнут

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

Что называется классом точности средства измеренийНа шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

Что называется классом точности средства измеренийОднако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

Читайте также:  Диоксид углерода формула химическая

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака "угол".

Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае

δ (х) = δ к + δ н (хк/х — 1),

где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.

Характеристики, введенные ГОСТ 8.009-84, наиболее полно описывают метрологические свойства СИ. Однако в настоящее время в эксплуатации находится достаточно большое число СИ, метрологические характеристики которых нормированы несколько по-другому, а именно на основе классов точности. Класс точности — это обобщенная характеристика СИ, выражаемая пределами допускаемых значений его основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность. Класс точности не является непосредственной оценкой точности измерений, выполняемых этим СИ, поскольку погрешность зависит еще от ряда факторов: метода измерений, условий измерений и т.д. Класс точности лишь позволяет судить о том, в каких пределах находится погрешность СИ данного типа. Общие положения деления средств измерений по классу точности устанавливает ГОСТ 8.401-80.

Предел допускаемой основной погрешности

Пределы допускаемой основной погрешности Δси, определяемые классом точности — это интервал, в котором находится значение основной погрешности СИ. Если СИ имеет незначительную случайную составляющую, то определение Δси относится к нахождению систематической погрешности и случайной погрешности, обусловленной гистерезисом, и является достаточно строгим. При этом предел Δси= ΔSР+0,5Нop.

Если СИ имеет существенную случайную погрешность, то для него определение предела допускаемой основной погрешности является нечетким. Его следует понимать как интервал, в котором находится значение основной погрешности с неизвестной вероятностью, близкой к единице: ΔСИ=±(Δоsр+Кσ[Δ’о]+0,5Н), где К — коэффициент, зависящий от доверительной вероятности Р.

Предел допускаемой дополнительной погрешности

Предел допускаемой дополнительной погрешности, вызванной изменением Δξ, влияющей величины ξ, может быть найден с использованием функции влияния ψ(ξ):

Классы точности СИ

Классы точности СИ устанавливаются в стандартах или технических условиях. Средство измерений может иметь два и более класса точности. Например, при наличии у него двух или более диапазонов измерений одной и той же физической величины ему можно присваивать два или более класса точности. Приборы, предназначенные для измерения нескольких физических величин, также могут иметь различные классы точности для каждой измеряемой величины.

Читайте также:  Формула скорости резания при токарной обработке

Пределы допускаемых основной и дополнительной погрешностей выражают в форме приведенных, относительных или абсолютных погрешностей. Выбор формы представления зависит от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения СИ.

Пределы допускаемой абсолютной основной погрешности устанавливаются по одной из формул: Δ=±а или Δ=±(а+bx) , где х — значение измеряемой величины или число делений, отсчитанное по шкале; a, b — положительные числа, не зависящие от х. Первая формула описывает чисто аддитивную погрешность (рис. 7.18,а), а вторая – сумму аддитивной и мультипликативной погрешностей (рис.7.18,в). В технической документации классы точности, установленные в виде абсолютных погрешностей, обозначают, например, "Класс точности М", а на приборе — буквой "М". Для обозначения используются прописные буквы латинского алфавита или римские цифры, причем меньшие пределы погрешностей должны соответствовать буквам, находящимся ближе к началу алфавита, или меньшим цифрам.

Что называется классом точности средства измерений

Рис. 7.18 Аддитивная (а), мультипликативная (б) и суммарная (в) погрешности в абсолютной и относительной формах

Пределы допускаемой приведенной основной погрешности определяются по формуле γ=A/xN=±р , где xN — нормирующее значение, выраженное в тех же единицах, что и Δ; р- отвлеченное положительное число, выбираемое из ряда значений: (1; 1,5; 2; 2,5; 4; 5; 6)x10 n ; n=1; 0; -1; -2;.

Нормирующее значение xN устанавливается равным большему из пределов измерений (или модулей) для СИ с равномерной, практически равномерной или степенной шкалами и для измерительных преобразователей, если нулевое значение выходного сигнала находится на краю или вне диапазона измерений.

Для СИ, шкала которых имеет условный нуль, xN равно модулю разности пределов измерений. Например, для вольтметра термоэлектрического термометра с пределами измерений 100 и 600°С нормирующее значение равно 500°С. Для СИ с заданным номинальным значением xN устанавливают равным этому значению.

В стандартах или технических условиях на СИ указывается минимальное значение х, начиная с которого применим принятый способ выражения пределов допускаемой относительной погрешности. Отношение хк называется динамическим диапазоном измерения.

Предел допускаемой дополнительной погрешности Δдси может указываться в виде:

  • постоянного значения для всей рабочей области влияющей величины или постоянных значений по интервалам рабочей области влияющей величины;
  • отношения предела допускаемой дополнительной погрешности, соответствующего регламентированному интервалу влияющей величины, к этому интервалу;
  • зависимости предела Δдси от влияющей величины (предельной функции влияния);
  • функциональной зависимости пределов допускаемых отклонений от номинальной функции влияния.