Бесконтактное измерение температуры поверхности

Все электроприборы работают за счет прохождения через них электрического тока, который дополнительно нагревает проводники и оборудование. При этом в нормальном режиме эксплуатации создается баланс между повышением температуры и отводом ее части в окружающую среду.

При нарушениях качества контактов ухудшаются условия прохождения тока и повышается температура, которая может стать причиной неисправности. Поэтому в сложных электротехнических устройствах, особенно на высоковольтном оборудовании предприятий энергетики, осуществляется периодический контроль нагрева токоведущих частей.

Для устройств, находящихся под высоким напряжением, измерения осуществляются бесконтактным методом на безопасном расстоянии.

Принципы дистанционного измерения температуры

У любого физического тела происходит движение атомов и молекул, которое сопровождается излучением электромагнитных волн. Температура объекта влияет на интенсивность этих процессов и о ее величине можно судить по значению теплового потока.

Бесконтактное измерение температуры основано на этом принципе.

Источник обследования с температурой «Т» излучает в окружающее пространство тепловой поток «Ф», который воспринимается тепловым датчиком, удаленным от источника тепла. После него преобразованный внутренней схемой сигнал выдается на информационное табло «И».

Приборы измерения температуры, осуществляющие ее замер по инфракрасному излучению, называют инфракрасными термометрами либо сокращенным названием «пирометры».

Для их точной работы важно правильно определить диапазон измерения на шкале электромагнитных волн, который составляет область примерно 0,5?20 мкм.

Факторы, влияющие на качество измерения

Погрешность пирометров зависит от комплекса факторов:

  1. поверхность наблюдаемой площади объекта должна быть в зоне прямого обзора;
  2. пыль, туман, пар и другие предметы между тепловым датчиком и источником тепла ослабляют сигнал, как и следы загрязнения на оптике;
  3. структура и состояние поверхности исследуемого тела влияют на интенсивность инфракрасного потока и показания измерителя температуры.

Влияние третьего фактора объясняет график изменения коэффициента излучения ? от длины волны.

Он демонстрирует характеристики излучателей черного, серого и цветного оттенков.

Способность инфракрасного излучения Фs черного материала берется за основу сравнения других изделий и принимается равным 1. Коэффициенты всех остальных реальных веществ ФR становятся меньше 1.

На практике пирометры пересчитывают излучение реальных объектов на показатели идеального излучателя.

Также на измерение оказывают влияние:

длина волны инфракрасного спектра, на которой проводится замер;

температура исследуемого вещества.

Как устроен бесконтактный измеритель температуры

По способу вывода информации и ее обработки приборы удаленного контроля нагрева поверхностей подразделяют на:

Условно состав этих приборов поблочно можно представить:

инфракрасным датчиком с оптической системой и зеркальным световодом;

электронной схемой, преобразующей полученный сигнал;

дисплеем, на котором отображается температура;

Поток теплового излучения фокусируется оптической системой и зеркалами направляется на датчик первичного преобразования тепловой энергии в электрический сигнал с величиной напряжения, прямо пропорциональной инфракрасному излучению.

Вторичное преобразование электрического сигнала происходит в электронном устройстве, после которого измерительно-счетный модуль осуществляет вывод информации на дисплей, как правило, в цифровом виде.

На первый взгляд кажется, что пользователю для замера температуры удаленного объекта достаточно:

включить прибор нажатием на кнопку;

навести на исследуемый объект;

Однако, для точного измерения необходимо не только учесть факторы, влияющие на показания, но и правильно выбрать расстояние до объекта, которое определяется оптическим разрешением прибора.

Пирометры обладают различными углами обзора, характеристикой которых для удобства пользователей выбраны соотношения между расстоянием до объекта измерения и площадью охвата контролируемой поверхностью. В качестве примера на картинке приведено соотношение 10:1.

Поскольку эти характеристики прямо пропорциональны между собой, то для точного измерения температуры необходимо не только правильно навести прибор на объект, но и подобрать расстояние для выбора площади измеряемой зоны.

Тогда оптическая система будет обрабатывать тепловой поток от нужной поверхности без учета влияния излучения окружающих предметов.

Читайте также:  Жучок прослушка своими руками

С этой целью усовершенствованные модели пирометров оснащаются лазерными целеуказателями, которые помогают навести термодатчик на объект и облегчить определение площади контролируемой поверхности. Они могут иметь разные принципы работы и обладать неодинаковой точностью наведения.

Одиночный лазерный луч лишь приблизительно указывает место центра контролируемой зоны и позволяет определить ее границы неточно. Его ось смещена относительно центра оптической системы пирометра. За счет этого вводится погрешность параллакса.

Коаксиальный способ лишен этого недостатка — луч лазера совпадает с оптической осью прибора и точно указывает центр измеряемой площади, но не определяет ее границы.

Указание размеров контролируемого участка предусмотрено в целеуказателе с двойным лазерным лучом . Но при маленьких расстояниях до объекта допускается ошибка, вызванная первоначальным сужением области чувствительности. Этот недостаток сильно проявляется на объективах с короткофокусным расстоянием.

Целеуказатели с кросс-лазером улучшают точность работы пирометров, оснащенных объективами с коротким фокусом.

Одиночный круговой лазерный луч позволяет определить зону контроля, но он тоже обладает параллаксом и завышает показания прибора на коротких дистанциях.

Круговой точный лазерный целеуказатель работает наиболее надежно и лишен всех недостатков предшествующих конструкций.

Пирометры отображают информацию о температуре методом текстово-цифрового вывода на дисплей, которая может дополняться другими сведениями.

Конструкция этих измерительных приборов температуры напоминает устройство пирометров. У них в качестве приемного элемента потока инфракрасного излучения работает гибридная микросхема.

Устройство приемника тепловизора с гибридной микросхемой показано на картинке.

Тепловая чувствительность тепловизоров на основе матричных детекторов позволяет измерять температуру с точностью до 0,1 градуса. Но, такие высокоточные устройства используются в термографах сложных лабораторных стационарных установок.

Все приемы работы с тепловизором выполняются так же, как и с пирометром, но на его экране выводится картинка электротехнического оборудования, представленная уже в переработанном цветовом диапазоне с учетом состояния нагрева всех деталей.

Рядом с термическим изображением размещается шкала перевода цветов в линейку температур.

При сравнении работы пирометра и тепловизора можно увидеть разницу:

пирометр определяет среднюю температуру в контролируемой им области;

тепловизор позволяет оценить нагрев всех составных элементов, расположенных в наблюдаемой им зоне.

Особенности конструкций бесконтактных измерителей температуры

Описанные выше устройства представлены мобильными моделями, позволяющими выполнять последовательные замеры температуры на многих местах работы электрического оборудования:

вводах силовых и измерительных трансформаторов и выключателей;

контактах разъединителей, работающих под нагрузкой;

сборках систем шин и секций высоковольтных распределительных устройств;

в точках соединения проводов воздушных линий электропередач и других местах коммутации силовых цепей.

Однако, в отдельных случаях выполнения технологических операций на электрооборудовании сложные конструкции бесконтактных измерителей температуры не нужны и вполне можно обойтись простыми моделями, установленными стационарно.

В качестве примера можно привести метод измерения сопротивления обмотки ротора генератора при работе с выпрямительной схемой возбуждения. Поскольку в ней наводятся большие переменные составляющие напряжения, то контроль ее нагрева осуществляется постоянно.

Дистанционный замер и отображение температуры у обмотки возбуждения происходит на вращающемся роторе. Термодатчик стационарно располагается в наиболее благоприятной зоне контроля и воспринимает направленные на него тепловые лучи. Сигнал, обработанный внутренней схемой, выводится на устройство отображения информации, которое может быть оборудовано стрелочным указателем и шкалой.

Схемы, работающие по этому принципу, отличаются относительной простотой и надежностью.

В зависимости от назначения пирометры и тепловизоры подразделяют на устройства:

высокотемпературные, предназначенные для измерения сильно нагретых объектов;

низкотемпературные, способные контролировать даже охлаждение деталей при морозе.

Конструкции современных пирометров и тепловизоров могут оборудоваться системами связи и передачи информации через шину RS-232 с удаленными компьютерами.

Бесконтактные измерения температуры незаменимы в тех случаях, когда нежелательно, невозможно, сложно или опасно обес­печить механический контакт датчика с объектом измерения [1].

Читайте также:  Каким клеем можно склеить пластик с пластиком

Не так легко определить температуру находящегося в движе­нии объекта, например быстродвижущейся бумажной ленты, или вращающегося барабана бетономешалки, или потока горячего асфальта. Иногда поверхность объекта, температура которого ин­тересует, недоступна или небезопасна (например, при оценке перегрева контактного соединения воздушной линии электропе­редачи или высоковольтного трансформатора).

Другая ситуация: объект исследования имеет малые габарит­ные размеры и массу (следовательно, малую теплоемкость) и использование контактных термометров привело бы к очень боль­шой методической погрешности (погрешности взаимодействия) за счет значительного количества тепла, отнимаемого датчиком прибора от объекта и, как следствие, недопустимого искажения режима его работы и, естественно, результата измерения. Особен­но сильно это проявлялось бы при необходимости исследования достаточно быстрых изменений температуры исследуемого объек­та малой массы, например в случае оценки температуры мини­атюрных электронных узлов.

Бесконтактные методы и средства измерений температуры являются так называемыми неинвазивными, т. е. не требуют вмешательства в ход технологического процесса, не создают проблем с установкой датчиков, не требуют контакта с объектом исследова­ния, не порождают погрешностей взаимодействия инструмента с объектом и некоторых других неприятностей.

Еще один класс задач, где использование бесконтактных ме­тодов и средств не только целесообразно, но и неизбежно (так как не имеет альтернативы) измерение сверхвысоких темпера­тур (например, измерение температуры расплавленных металлов). Возможная верхняя граница контактно-измеряемых температур составляет 2 000. 2 500 град.С, поэтому измерения более высоких тем­ператур производят только бесконтактными методами.

Бесконтактные методы измерения реализованы в различных инфракрасных (ИК) средствах измерения (InfraRed Instrumen­tation) термометрах и измерительных преобразователях, а так­же в оптических термометрах пирометрах. Инфракрасные изме­рители обеспечивают измерение температур в широком диапазо­не температур (50. 5000°С). Оптические термометры (пиромет­ры) принципиально пригодны лишь для измерения очень высо­ких температур, при которых поверхность объекта уже, видимо, светится (600 °С и выше). Кроме того, точность и чувствительность измерения оптическими термометрами невысоки.

Важными достоинствами ИК-термометров являются широкие диапазоны измеряемых температур, достаточно высокие точность, чувствительность и быстродействие, хорошие эксплутационные характеристики, сравнительно невысокая стоимость. Однако не так просто реализовать основные преимущества ИК-термометров. Для достоверного результата измерения требуются достаточно высокая квалификация пользователя, знание специфики ИК-измерений, определенный опыт практических обследований [5].

Любое тело, обладающее температурой выше абсолютного нуля (-273 °С), имеет тепловое излучение. С ростом температуры уве­личиваются амплитуда и частота колебаний молекул вещества тела. Человек своими органами чувств (осязанием) воспринима­ет тепло и свет (зрением). Физическая природа колебаний одна и та же (тепловая), но частота колебаний различна и зависит от конкретной степени нагретости объектов. При температуре 600. 1 000 град.С и выше (в зависимости от материала объекта) неко­торое количество энергии тела излучается в видимой глазом части спектра.

В физике используется понятие «оптическое излучение», соот­ветствующее электромагнитному излучению с длинами волн X, расположенными в диапазоне 1 нм. 1 мм. Этот диапазон делится на три части. Рисунок 23 иллюстрирует соотношение поддиапазонов ИК-излучения, видимого (В), ультрафиолетового (УФ) и со­седних излучений. Верхняя ось абсцисс показывает значения ча­стот F, нижняя соответствующие частотам значения длин волн λ (в логарифмическом масштабе).

Диапазон длин волн X ультрафиолетового излучения составля­ет 1,0 нм. 0,38 мкм. Диапазон длин волн X видимого излучения 0,38. 0,76 мкм. Диапазон длин воли X ИК-излучения 0,76. 1000 мкм.

Радиоволны

10 -1 10 -2 10 -4 10 -6 10 -8 10 -10 10 -12 10 -14
Рисунок 23. − Диапазоны частот F и длин волн λ различных излучений

Устройство ИК-термометра

Методы и приборы бесконтактного ИК-измерения основаны на количественной оценке инфракрасного (теплового) излуче­ния объекта. Тепловое излучение обладает практически теми же свойствами, что и видимый человеком свет: распространяется пря­молинейно, способно отражаться, преломляться, проникать сквозь некоторые тела, может быть сфокусировано оптической системой линз (не обязательно прозрачных) и т.д. На рисунке 24 показана упрощенная структура ИК-термометра.

Читайте также:  Сверление чугуна в домашних условиях

1 − объект; 2 − объектив; 3 − приемник

Рисунок 24 − Упрощенная структура ИК-термометра

Тепловое излучение по­верхности объекта объективом прибора фокусируется на прием­ник, в качестве которого часто выступает термопара. ТермоЭДС термопары усиливается усилителем (Ус), преобразуется аналого-цифровым преобразователем (АЦП) в цифровой код, которым некоторое время хранится в запоминающем регистре (Рг) и представляется на индикаторе результатом измерения. Объектив ИК измерителя одновременно выполняет функцию полосового фильтра частот.

Инфракрасный измеритель может также содержать узлы свя­зи (аналоговой или цифровой) с внешними устройствами. На рисунке 24 показаны аналоговый (АВ) и цифровой (ЦВ) выходы. Наличие у ИК-термометра выхода аналогового сигнала, пропорционального текущему значению измеряемой температуры, позволяет подключить прибор к внешнему аналоговому самопишущему прибору или к цифровому измерительному регистратору.

Для задач длительного мониторинга применяются также инфракрасные измерительные преобразователи. Эти устройства не име­ют индикатора, их выходной аналоговый сигнал представлен то ком (например, 4. 20 мА), пропорциональным измеряемой тем­пературе, или напряжением (например, 0. 5 В). Они предназначены для работы совместно с показывающими приборами или с регистраторами в составе измерительных установок, комплексе и или систем.

Оптические средства измерений температуры по воспринимаемому излучению носят название пирометров. Пирометры делятся на:

− цветовые (основанные на измерении отношения интенсивностей излучения).

− радиационные (воспринимающие полную энергию излучения),

− яркостные (воспринимающие энергию излучения в какой-либо узкой части спектра).

Цветовой пирометр

Схема автоматического цветового пирометра представлена на рисунке 25, а, а на рисунке 25, б приведена его блок-схема сигналов. Излучение объекта 1 фокусируется линзой 2 и передается на модулятор – колеблющееся зеркало 3 с электромагнитным вибратором 4. Отраженное от зеркала излучение передается поочередно через красный (7) и зеленый (6) светофильтры на фотоприемник 10. В начале шкалы интенсивности красного и зеленого участков спектра одинаковы, и поэтому фотоприемник при сканировании излучением фильтров выдает равные напряжения. С ростом температуры объекта интенсивность зеленого излучения возрастает, что вызывает соответствующее увеличение выходного тока усилителя 9. Увеличение тока, в свою очередь, вызывает увеличение амплитуды колебаний зеркала относительно зеленого светофильтра. При этом возрастает поглощение зеленого излучения оптическим клином 8 до выравнивания интенсивностей излучения обоих цветов на входе фотоприемника. Отклонение выходного тока усилителя является мерой искомой температуры объекта. Пирометры такого типа позволяют измерять температуры, превышающие 700°С [1].

Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

Всем здравствуйте. Приобрел в Китае бесконтактный инфракрасный термометр. Предназначен для измерения температуры поверхности различных объектов. Диапазон измерения от -50 до +330 градусов С. Для более точного наведения на объект есть встроенный лазерный целеуказатель. Есть подсветка экрана. Питание от двух 1.5-вольтовых батареек AAA. Термометр сделан в Китае, но производитель был настолько скромен, что не указал ни себя, ни даже модель устройства. Тем не менее, прибор сделан довольно аккуратно, свою функцию выполняет. Как и полагается, испытал сначала на кошках, а затем на людях и неодушевленных предметах.))

Покупал больше из интереса, но думаю, что пригодится и в хозяйстве, и в гараже. Например, можно измерять температуру батарей отопления и горячей воды из крана, чтобы коммунальщики не расслаблялись.)) Ниже фото с моими примечаниями.